找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities and Constructive Methods for Their Treatment; Proceedings of the C Pierre Grisvard,Wolfgang L. Wendland,John R. White Confere

[復(fù)制鏈接]
樓主: 請回避
11#
發(fā)表于 2025-3-23 12:31:48 | 只看該作者
Calculation of potential in a sector,mputing the numerical values of the coefficients. Moreover, by suitably pairing some terms of the series, the resulting series of terms and pairs turns out to be convergent. It is therefore quite suitable for calculating values of the harmonic function near the vertex.
12#
發(fā)表于 2025-3-23 14:43:05 | 只看該作者
Eigenfunction expansions for non self adjoint operators and separation of variables, the usual boundary conditions even in the case of fractures. Other examples are the Stokes equations and the Stokes-Beltrami equation in special geometries. This research has been mainly motivated by various papers of . (especially ref. [7],[8] below). The main results are presented in the short note [5].
13#
發(fā)表于 2025-3-23 20:08:13 | 只看該作者
14#
發(fā)表于 2025-3-24 01:30:13 | 只看該作者
On finite element methods for nonlinear elliptic problems on domains with corners,e eigenvalue α is given by a root of a quadratic polynomial with known coefficients. The theoretical results are used for the investigation of the ordinary Finite Element Method and the Dual Singular Function Method already known from the linear case. Some numerical computations illustrate the theoretical results.
15#
發(fā)表于 2025-3-24 06:24:37 | 只看該作者
Singularities of cracks with generalized finite elements,e surface displacements of notch or crack zones accurately. Most of these aforementioned difficulties can be eliminated by using a modified hybrid stress model in combination with the displacement method. The proposed . will be shown to offer some significant advantages for plane, axi-symmetric and three dimensionel problems of fracture mechanics.
16#
發(fā)表于 2025-3-24 07:44:31 | 只看該作者
17#
發(fā)表于 2025-3-24 11:05:46 | 只看該作者
Singularities and Constructive Methods for Their Treatment978-3-540-39377-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 18:06:45 | 只看該作者
19#
發(fā)表于 2025-3-24 21:00:34 | 只看該作者
20#
發(fā)表于 2025-3-25 00:16:34 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/s/image/867919.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南昌县| 四川省| 波密县| 库伦旗| 北川| 扬州市| 左权县| 田林县| 博乐市| 永丰县| 庆阳市| 周宁县| 富蕴县| 岢岚县| 广昌县| 库尔勒市| 遂昌县| 炎陵县| 交口县| 平度市| 辰溪县| 太保市| 黄山市| 苍山县| 鄂托克前旗| 商丘市| 曲周县| 兰考县| 泰宁县| 沁阳市| 天峻县| 榆中县| 宁武县| 北安市| 抚顺市| 滨海县| 汪清县| 兴城市| 苏州市| 平和县| 湟源县|