找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Problems in Shell Theory; Computing and Asympt Evariste Sanchez-Palencia,Olivier Millet,Fabien Bé Book 2010 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 獨裁者
41#
發(fā)表于 2025-3-28 17:40:50 | 只看該作者
42#
發(fā)表于 2025-3-28 20:58:05 | 只看該作者
Singularities of Parabolic Inhibited Shells,a partial differential equation involving only one component of the displacement. We obtained general results on the orders of the singularities of the displacements and on their propagation, which depend strongly on the nature of the middle surface of the shell (parabolic, hyperbolic or elliptic).
43#
發(fā)表于 2025-3-29 01:14:34 | 只看該作者
Singularities of Hyperbolic Inhibited Shells,e are two asymptotic directions. Concerning the singularities emerging when . 0, some aspects are very similar to the case of parabolic shells. For instance, singularities along characteristics are more singular than the loading . (at least for the normal displacement .) and propagate.
44#
發(fā)表于 2025-3-29 04:08:37 | 只看該作者
45#
發(fā)表于 2025-3-29 10:24:25 | 只看該作者
Introduction,Thin shells are three-dimensional structures with a dimension (the thickness) small with respect to the two others. Such thin structures are widely used in automobile and aviation industries, or in civil engineering, because they provide an important stiffness, due to their curvature, with a small weight.
46#
發(fā)表于 2025-3-29 14:50:46 | 只看該作者
47#
發(fā)表于 2025-3-29 17:06:27 | 只看該作者
48#
發(fā)表于 2025-3-29 20:20:20 | 只看該作者
49#
發(fā)表于 2025-3-30 03:03:29 | 只看該作者
50#
發(fā)表于 2025-3-30 04:16:33 | 只看該作者
978-3-642-26433-7Springer-Verlag Berlin Heidelberg 2010
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
利津县| 新沂市| 留坝县| 德惠市| 庆元县| 连江县| 密云县| 海阳市| 那坡县| 维西| 中西区| 化德县| 浦东新区| 布尔津县| 定日县| 益阳市| 襄汾县| 波密县| 凤翔县| 镇沅| 古交市| 宁晋县| 保亭| 安达市| 浑源县| 厦门市| 南京市| 甘洛县| 谷城县| 绩溪县| 涿鹿县| 赞皇县| 巢湖市| 磐安县| 德化县| 呼玛县| 偏关县| 台湾省| 德江县| 嵊州市| 旅游|