找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Problems in Shell Theory; Computing and Asympt Evariste Sanchez-Palencia,Olivier Millet,Fabien Bé Book 2010 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 獨裁者
31#
發(fā)表于 2025-3-26 22:48:25 | 只看該作者
32#
發(fā)表于 2025-3-27 02:02:09 | 只看該作者
33#
發(fā)表于 2025-3-27 08:05:26 | 只看該作者
34#
發(fā)表于 2025-3-27 12:25:17 | 只看該作者
35#
發(fā)表于 2025-3-27 17:13:31 | 只看該作者
Generalities on Boundary Conditions for Equations and Systems: Introduction to Sensitive Problems,amped (or fixed) by a part Γ. of the boundary and free by the rest Γ.. Note that such sensitive problems or “ill-posed problems”, have already been considered in general in [70], and in some very particular case of shells in [10][23][83].
36#
發(fā)表于 2025-3-27 20:38:07 | 只看該作者
Numerical Simulations for Sensitive Shells,l boundary. In chapter 8, we considered elliptic shells having a part of their boundary which is free. In that case, they are ill inhibited (and even “sensitive”, . . is not a space of distribution), and the problem is more complex. A pathological behavior emerges progressively when . tends toward z
37#
發(fā)表于 2025-3-27 22:23:05 | 只看該作者
38#
發(fā)表于 2025-3-28 04:39:38 | 只看該作者
Examples of Non-inhibited Shell Problems (Non-geometrically Rigid Problems), avoids the (large) membrane energy, and only uses the (small) bending energy. In these very particular deformations, involving inextensional displacements, the asymptotic lines of the surface play a peculiar role, leading to an anisotropic behavior.
39#
發(fā)表于 2025-3-28 09:00:37 | 只看該作者
40#
發(fā)表于 2025-3-28 13:34:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和田市| 武穴市| 保康县| 天津市| 商洛市| 平谷区| 和政县| 射洪县| 淮北市| 寻乌县| 桂平市| 庆阳市| 内江市| 娱乐| 贵定县| 崇仁县| 漳浦县| 镇雄县| 闽侯县| 乐亭县| 双流县| 新河县| 惠水县| 永平县| 乌拉特后旗| 河南省| 邯郸市| 台南市| 都江堰市| 深州市| 驻马店市| 沽源县| 蒙自县| 漾濞| 任丘市| 安岳县| 敦煌市| 康乐县| 贡嘎县| 新余市| 浦江县|