找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Perturbations in Systems and Control; M. D. Ardema Book 1983 Springer-Verlag Wien 1983 Control.Lineares System.Nichtlineares Syst

[復制鏈接]
樓主: clannish
41#
發(fā)表于 2025-3-28 15:32:02 | 只看該作者
On Nonlinear Optimal Control Problems,d Sannuti (1968) and Sannuti and Kokotovic (1969)). They showed how such problems can be reduced to nonlinear two-point singularly perturbed boundary value problems for the states and costates, constrained by an optimality condition. Even without such constraints, however, a general theory for such
42#
發(fā)表于 2025-3-28 22:25:02 | 只看該作者
,Slow/Fast Decoupling — Analytical and Numerical Aspects,heory and throughout science (for such singular perturbation problems, see O’Malley (1974) and (1978)). It is naive to think that much progress has been made when one writes down the variation of parameters formula.for a solution, since it, in large part, merely converts the problem to others involv
43#
發(fā)表于 2025-3-29 00:31:49 | 只看該作者
Regular Perturbations in Optimal Control,atment of Cruz is limited to the case without constraints on the control. The main objective of this paper is to extend the theory to get rid of this restriction. Our method of proof is also different.
44#
發(fā)表于 2025-3-29 06:00:50 | 只看該作者
Optimal Control of Perturbed Markov Chains: The Multitime Scale Case,ion in ε, w., of the dynamic programming equation:.m.(ε), c.(ε), λ(ε) are polynomials in ε. The case λ(ε) = ε. leads to study Markov chains on a time scale of order 1/ε.. The state space and the control set are finite.
45#
發(fā)表于 2025-3-29 07:50:08 | 只看該作者
46#
發(fā)表于 2025-3-29 13:19:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
柘荣县| 布拖县| 友谊县| 福泉市| 阿拉尔市| 犍为县| 仁化县| 定西市| 平利县| 永吉县| 定安县| 邵阳市| 通城县| 都安| 天峨县| 宁阳县| 古丈县| 昌江| 高密市| 南阳市| 宜宾县| 彭泽县| 西乌珠穆沁旗| 岚皋县| 南皮县| 博客| 华蓥市| 丰顺县| 井陉县| 天门市| 博乐市| 巴塘县| 益阳市| 衡水市| 福建省| 财经| 章丘市| 交城县| 韩城市| 石门县| 北宁市|