找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Integrals and Fourier Theory on Lipschitz Boundaries; Tao Qian,Pengtao Li Book 2019 Springer Nature Singapore Pte Ltd. and Scienc

[復(fù)制鏈接]
查看: 54511|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:49:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries
編輯Tao Qian,Pengtao Li
視頻videohttp://file.papertrans.cn/868/867883/867883.mp4
概述States systemically the theory of singular integrals and Fourier multipliers.on the Lipschitz graphs and surfaces.Elaborates the basic framework, essential thoughts and main results.Reveals the equiva
圖書(shū)封面Titlebook: Singular Integrals and Fourier Theory on Lipschitz Boundaries;  Tao Qian,Pengtao Li Book 2019 Springer Nature Singapore Pte Ltd. and Scienc
描述.The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers.?.
出版日期Book 2019
關(guān)鍵詞Singular integrals; Fourier multipliers; Lipschitz curves; Clifford analysis; Fourier transform; Lipschit
版次1
doihttps://doi.org/10.1007/978-981-13-6500-3
isbn_softcover978-981-13-6502-7
isbn_ebook978-981-13-6500-3
copyrightSpringer Nature Singapore Pte Ltd. and Science Press 2019
The information of publication is updating

書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries影響因子(影響力)




書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries影響因子(影響力)學(xué)科排名




書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries被引頻次




書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries被引頻次學(xué)科排名




書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries年度引用




書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries年度引用學(xué)科排名




書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries讀者反饋




書(shū)目名稱Singular Integrals and Fourier Theory on Lipschitz Boundaries讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:54:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:40:28 | 只看該作者
地板
發(fā)表于 2025-3-22 05:14:49 | 只看該作者
5#
發(fā)表于 2025-3-22 09:56:42 | 只看該作者
6#
發(fā)表于 2025-3-22 13:42:51 | 只看該作者
7#
發(fā)表于 2025-3-22 17:19:34 | 只看該作者
978-981-13-6502-7Springer Nature Singapore Pte Ltd. and Science Press 2019
8#
發(fā)表于 2025-3-23 01:02:47 | 只看該作者
9#
發(fā)表于 2025-3-23 05:13:19 | 只看該作者
10#
發(fā)表于 2025-3-23 06:38:00 | 只看該作者
Convolution Singular Integral Operators on Lipschitz Surfaces,e question. In 1994, C. Li, A. McIntosh and S. Semmes embedded . into Clifford algebra . and considered the class of holomorphic functions on the sectors ., see [.]. They proved that if the function . belongs to ., then the singular integral operator . with the kernel . on Lipschitz surface is bounded on ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄浪县| 清原| 临泉县| 阿勒泰市| 嘉义市| 莲花县| 黄浦区| 克东县| 临城县| 红河县| 普宁市| 昌邑市| 兰州市| 青河县| 邢台市| 禹州市| 西吉县| 沭阳县| 界首市| 东乌珠穆沁旗| 通许县| 安福县| 南开区| 滁州市| 银川市| 望城县| 临猗县| 皋兰县| 体育| 铁岭县| 闽清县| 保靖县| 禄劝| 肥乡县| 霍林郭勒市| 博野县| 甘孜县| 温宿县| 多伦县| 灌南县| 罗定市|