找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Single-Facility Location Problems with Barriers; Kathrin Klamroth Textbook 2002 Springer-Verlag New York 2002 Optimization Theory.algorith

[復(fù)制鏈接]
樓主: GRASS
11#
發(fā)表于 2025-3-23 13:36:10 | 只看該作者
Textbook 2002ling. Areas where the placement of a new facility is forbidden, referred to as forbidden regions,canbeusedtomodel,forexample,protectedareasorregionswhere thegeographiccharacteristicsforbidtheconstructionofthedesiredfacility. Limitations on traveling are constituted by barrier regions or obstacles li
12#
發(fā)表于 2025-3-23 16:18:48 | 只看該作者
Shortest Paths in the Presence of BarriersThe problem of finding shortest paths in realistic environments plays an important role not only in location planning. Shortest-path problems in the presence of physical barriers arise, for example, in the planning of shortest water routes between different harbors or in the determination of an optimal path of a robot in an industrial plant.
13#
發(fā)表于 2025-3-23 18:08:16 | 只看該作者
Location Problems with Barriers: Basic Concepts and Literature ReviewIn the previous chapters we have dealt with the question of how best to define a distance between two fixed points in the .-dimensional real space ?. if constraints for traveling in the form of barriers are given. In this chapter we are free to choose one of these points in space, a ., as long as we do not interfere with the given barriers.
14#
發(fā)表于 2025-3-24 00:09:40 | 只看該作者
15#
發(fā)表于 2025-3-24 04:46:11 | 只看該作者
Location Problems with a Circular BarrierUp to now the advantages of polyhedral barriers have been exploited by using the extreme points of the barrier sets as reference points for related unconstrained location problems. In the case of nonpolyhedral barriers, a different approach will be needed.
16#
發(fā)表于 2025-3-24 06:37:31 | 只看該作者
Center Problems with the Manhattan MetricBased on the work Dearing et al. (2002), this chapter considers center problems with barriers.
17#
發(fā)表于 2025-3-24 11:36:27 | 只看該作者
18#
發(fā)表于 2025-3-24 17:19:09 | 只看該作者
https://doi.org/10.1007/b98843Optimization Theory; algorithms; global optimization; operations research; optimization
19#
發(fā)表于 2025-3-24 21:24:38 | 只看該作者
20#
發(fā)表于 2025-3-25 01:47:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沂水县| 如东县| 新民市| 新宾| 内乡县| 龙山县| 雷山县| 辽宁省| 伊金霍洛旗| 正定县| 汉中市| 寻乌县| 清徐县| 吉水县| 桃江县| 苍梧县| 清丰县| 宣化县| 宁蒗| 阿拉善左旗| 繁峙县| 边坝县| 于都县| 兴海县| 临颍县| 娱乐| 房产| 湖北省| 朝阳市| 壤塘县| 赤峰市| 台江县| 平果县| 旺苍县| 乌兰浩特市| 神木县| 宿迁市| 云霄县| 兴文县| 宜章县| 甘洛县|