找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Shuffle Approach Towards Quantum Affine and Toroidal Algebras; Alexander Tsymbaliuk Book 2023 The Author(s), under exclusive license to Sp

[復(fù)制鏈接]
查看: 17225|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:36:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras
編輯Alexander Tsymbaliuk
視頻videohttp://file.papertrans.cn/867/866792/866792.mp4
概述Shuffle approach is a powerful technique in treating both algebraic and geometric aspects of quantum affinized algebras.Collects in one volume information about shuffle algebras which usually is sprea
叢書(shū)名稱SpringerBriefs in Mathematical Physics
圖書(shū)封面Titlebook: Shuffle Approach Towards Quantum Affine and Toroidal Algebras;  Alexander Tsymbaliuk Book 2023 The Author(s), under exclusive license to Sp
描述This book is based on the author‘s mini course delivered at Tokyo University of Marine Science and Technology in March 2019.?.The shuffle approach to Drinfeld–Jimbo quantum groups of finite type (embedding their "positive" subalgebras into q-deformed shuffle algebras) was first developed independently in the 1990s by J. Green, M. Rosso, and P. Schauenburg. Motivated by similar ideas, B. Feigin and A. Odesskii proposed a shuffle approach to elliptic quantum groups around the same time. The shuffle algebras in the present book can be viewed as trigonometric degenerations of the Feigin–Odesskii elliptic shuffle algebras. They provide combinatorial models for the "positive" subalgebras of quantum affine algebras in their loop realizations. These algebras appeared first in that context in the work of B. Enriquez..Over the last decade, the shuffle approach has been applied to various problems in combinatorics (combinatorics of Macdonald polynomials and Dyck paths, generalization to wreath Macdonald polynomials and operators), geometric representation theory (especially the study of quantum algebras’ actions on the equivariant K-theories of various moduli spaces such as affine Laumon spac
出版日期Book 2023
關(guān)鍵詞Shuffle Approach; Quantum Affine Algebras; Quantum Toroidal Algebras; Representation Theory; Combinatori
版次1
doihttps://doi.org/10.1007/978-981-99-3150-7
isbn_softcover978-981-99-3149-1
isbn_ebook978-981-99-3150-7Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
The information of publication is updating

書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras影響因子(影響力)




書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras影響因子(影響力)學(xué)科排名




書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras被引頻次




書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras被引頻次學(xué)科排名




書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras年度引用




書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras年度引用學(xué)科排名




書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras讀者反饋




書(shū)目名稱Shuffle Approach Towards Quantum Affine and Toroidal Algebras讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:52:24 | 只看該作者
Quantum Loop ,, Its Two Integral Forms, and Generalizations,nstruct a family of PBWD (Poincaré-Birkhoff-Witt-Drinfeld) bases for the quantum loop algebra . in the new Drinfeld realization. The shuffle approach also allows to strengthen this by constructing a family of PBWD bases for the RTT form (arising naturally from a different, historically the first, re
板凳
發(fā)表于 2025-3-22 02:13:04 | 只看該作者
Quantum Toroidal ,, Its Representations, and Geometric Realization,elliptic Hall algebra of?[.], which provides its “90 degree rotation” automorphism . (first discovered in?[.]). We also establish the shuffle realization of its “positive” subalgebra and its particular commutative subalgebra, due to?[., .], respectively. Following?[., ., .], we discuss a combinatori
地板
發(fā)表于 2025-3-22 05:56:36 | 只看該作者
Quantum Toroidal ,, Its Representations, and Geometric Realization,e some flavor of the applications to the geometry by realizing Fock modules and their tensor products via equivariant .-theory of the Gieseker moduli spaces, as well as evoking the .-theoretic version of the Nakajima’s construction from?[.].
5#
發(fā)表于 2025-3-22 12:08:37 | 只看該作者
Book 2023Drinfeld–Jimbo quantum groups of finite type (embedding their "positive" subalgebras into q-deformed shuffle algebras) was first developed independently in the 1990s by J. Green, M. Rosso, and P. Schauenburg. Motivated by similar ideas, B. Feigin and A. Odesskii proposed a shuffle approach to ellipt
6#
發(fā)表于 2025-3-22 15:29:36 | 只看該作者
7#
發(fā)表于 2025-3-22 20:14:59 | 只看該作者
Alexander TsymbaliukShuffle approach is a powerful technique in treating both algebraic and geometric aspects of quantum affinized algebras.Collects in one volume information about shuffle algebras which usually is sprea
8#
發(fā)表于 2025-3-23 00:15:30 | 只看該作者
SpringerBriefs in Mathematical Physicshttp://image.papertrans.cn/s/image/866792.jpg
9#
發(fā)表于 2025-3-23 02:08:05 | 只看該作者
10#
發(fā)表于 2025-3-23 05:46:55 | 只看該作者
978-981-99-3149-1The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
客服| 桂东县| 广灵县| 南皮县| 拜城县| 北京市| 南雄市| 南投市| 铁力市| 称多县| 化德县| 保亭| 建始县| 武功县| 铜鼓县| 确山县| 济宁市| 宜州市| 宁津县| 海城市| 固始县| 武陟县| 闽清县| 福鼎市| 辽宁省| 金乡县| 武城县| 安图县| 泸定县| 柘城县| 思南县| 太和县| 乌鲁木齐县| 县级市| 湖州市| 台山市| 图们市| 江阴市| 逊克县| 库尔勒市| 延安市|