找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Set-valued Optimization; An Introduction with Akhtar A. Khan,Christiane Tammer,Constantin Z?line Book 2015 Springer-Verlag Berlin Heidelber

[復(fù)制鏈接]
樓主: morphology
21#
發(fā)表于 2025-3-25 04:31:34 | 只看該作者
Tangent Cones and Tangent Sets,erivatives and epiderivatives of set-valued maps are commonly defined by taking tangent cones and tangent sets of graphs and epigraphs of set-valued maps. Moreover, properties of tangent cones and tangent sets are quite decisive in giving calculus rules for derivatives and epiderivatives of set-valu
22#
發(fā)表于 2025-3-25 10:59:29 | 只看該作者
23#
發(fā)表于 2025-3-25 11:48:25 | 只看該作者
24#
發(fā)表于 2025-3-25 18:38:24 | 只看該作者
Duality,on vector approach, on set approach as well as on lattice approach. For set-valued optimization problems where the solution concept is based on vector approach we present conjugate duality statements. The notions of conjugate maps, subdifferential and a perturbation approach used for deriving these
25#
發(fā)表于 2025-3-25 22:57:24 | 只看該作者
Existence Results for Minimal Points,or spaces for quasiorders generated by convex cones. We continue with the presentation of several types of convex cones and compactness notions with respect to cones. We end the chapter with existence results for vector and set optimization problems.
26#
發(fā)表于 2025-3-26 00:23:29 | 只看該作者
27#
發(fā)表于 2025-3-26 05:52:14 | 只看該作者
28#
發(fā)表于 2025-3-26 10:47:37 | 只看該作者
Sensitivity Analysis in Set-Valued Optimization and Vector Variational Inequalities,al branches of pure and applied mathematics. During the last five decades, substantial progress has been made in sensitivity analysis for optimization problems with scalar objectives. On the other hand, the differentiability issues of the perturbation map for vector optimization problems and set opt
29#
發(fā)表于 2025-3-26 16:26:56 | 只看該作者
30#
發(fā)表于 2025-3-26 18:09:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁晋县| 长治县| 杨浦区| 仁化县| 鹤庆县| 五华县| 襄樊市| 凉城县| 华阴市| 金乡县| 耒阳市| 五原县| 沾益县| 常山县| 措美县| 寻乌县| 台东县| 汶川县| 黑山县| 咸阳市| 华亭县| 铁岭县| 礼泉县| 嘉祥县| 天峨县| 太原市| 宁海县| 西安市| 平乐县| 大名县| 休宁县| 商水县| 青河县| 岳西县| 宁都县| 通化市| 招远市| 开江县| 天柱县| 吉木萨尔县| 灯塔市|