找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminar on Stochastic Processes, 1984; E. ?inlar,K. L. Chung,R. K. Getoor Book 1986 Birkh?user Boston, Inc. 1986 Markov process.stochastic

[復(fù)制鏈接]
樓主: 代表
21#
發(fā)表于 2025-3-25 04:53:26 | 只看該作者
22#
發(fā)表于 2025-3-25 11:31:33 | 只看該作者
Martin T. Barlow,Edwin A. Perkins,S. James Taylorities of radio communications and the iteratively developing physical understanding of the ionosphere and of the equipment that might be used to investigate it. During 1926–28 he completed his BSc at the University of Melbourne, Victoria. In 1929 he began a Master’s Degree, which was at that time a
23#
發(fā)表于 2025-3-25 15:12:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:00:09 | 只看該作者
25#
發(fā)表于 2025-3-25 22:19:49 | 只看該作者
Gauge Theorem for the Neumann Problem,] for bounded q and then in [1] and [4] for q ∈ K. (see below for definition). The gauge function for the Dirichlet problem is defined in [2] as.,where B = {B., t ≥ 0} is the standard Brownian motion on and IR. and τ. is the first exit time of D. One striking property of the gauge function proved in
26#
發(fā)表于 2025-3-26 00:46:41 | 只看該作者
27#
發(fā)表于 2025-3-26 04:20:39 | 只看該作者
Mean Exit Times of Markov Processes, if m is the center of the geodesic ball B. of radius e, and if T. is the first time X. exits B., they obtain the asymptotic expansion of P.[T.] as e goes to zero and identify the first three nonzero terms of the expression in terms of the geometry of the manifold. In view of the fact that p.[T.] co
28#
發(fā)表于 2025-3-26 08:49:35 | 只看該作者
On Strict-Sense Forms of the Hida-Cramer Representation,ochastic processes (Ω δ.,X., P). In discrete time, the analog would be to use a sequence of independent Bernoulli random walks. This is a very different setting, and one about which we have nothing to contribute. Evidently such a sequence does not go far toward generating a general discrete paramete
29#
發(fā)表于 2025-3-26 13:30:46 | 只看該作者
30#
發(fā)表于 2025-3-26 18:11:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 23:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乡宁县| 蓬安县| 江陵县| 黄骅市| 西畴县| 福海县| 苏尼特左旗| 台南县| 江西省| 金秀| 新巴尔虎左旗| 岑溪市| 驻马店市| 饶阳县| 建湖县| 盈江县| 新竹市| 故城县| 紫阳县| 扶绥县| 榕江县| 都安| 松江区| 德惠市| 霍州市| 分宜县| 阿拉善左旗| 宿松县| 抚松县| 台山市| 厦门市| 安阳县| 马鞍山市| 沛县| 安宁市| 滕州市| 栾城县| 江山市| 都昌县| 兰考县| 平昌县|