找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semigroups of Operators -Theory and Applications; B?dlewo, Poland, Oct Jacek Banasiak,Adam Bobrowski,Miros?aw Lachowicz Conference proceedi

[復(fù)制鏈接]
樓主: 能干
11#
發(fā)表于 2025-3-23 10:40:24 | 只看該作者
Some Remarks on the Krein-von Neumann Extension of Different LaplaciansWe discuss the Krein-von Neumann extensions of three Laplacian-type operators—on discrete graphs, quantum graphs, and domains. In passing we present a class of one-dimensional elliptic operators such that for any . infinitely many elements of the class have .-dimensional null space.
12#
發(fā)表于 2025-3-23 16:01:12 | 只看該作者
13#
發(fā)表于 2025-3-23 21:58:40 | 只看該作者
Jacek Banasiak,Adam Bobrowski,Miros?aw LachowiczIncludes cutting edge results in semi group theory and up-to-date applications of semigroups.Treats stochastic control in biological problems.Bridges gaps between theory and applications.Includes supp
14#
發(fā)表于 2025-3-23 22:39:19 | 只看該作者
15#
發(fā)表于 2025-3-24 04:09:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:30 | 只看該作者
The Null Volatility Limit of the Chaotic Black-Scholes Equation then shown that, keeping the volatility fixed and positive, the coefficients in the lower order terms in the generalized Black-Scholes equation can be replaced by any real constants, and one still obtains chaotic semigroups. Finally, the heat equation on the real line with arbitrary coefficients in the lower order terms is shown to be chaotic.
17#
發(fā)表于 2025-3-24 10:54:36 | 只看該作者
18#
發(fā)表于 2025-3-24 16:01:46 | 只看該作者
Two Approaches to Infinite Dimensional Extension of Feynman-Kac Theoremhe probability characteristic . with a measurable . is under consideration. The main point of the paper is studying the relationship on the basis of two different approaches—“semigroup approach” and “Ito approach”. Special attention is given to the definition and interpretation of objects in the equations.
19#
發(fā)表于 2025-3-24 20:33:27 | 只看該作者
20#
發(fā)表于 2025-3-25 03:03:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固阳县| 出国| 武义县| 大田县| 旅游| 襄汾县| 彩票| 丹棱县| 余干县| 朝阳县| 舟曲县| 固始县| 乌鲁木齐市| 定州市| 滕州市| 新晃| 石城县| 博客| 新丰县| 高碑店市| 托克托县| 博客| 集贤县| 个旧市| 板桥市| 车险| 广宗县| 浮山县| 托里县| 宿迁市| 湘乡市| 清新县| 沙坪坝区| 绥阳县| 轮台县| 湘西| 永德县| 江津市| 石城县| 鹤峰县| 新田县|