找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semiconductor Physics; An Introduction Karlheinz Seeger Textbook 19997th edition Springer-Verlag Berlin Heidelberg 1999 electrical engineer

[復(fù)制鏈接]
樓主: 法庭
41#
發(fā)表于 2025-3-28 15:15:07 | 只看該作者
42#
發(fā)表于 2025-3-28 20:58:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:20:01 | 只看該作者
44#
發(fā)表于 2025-3-29 03:09:25 | 只看該作者
45#
發(fā)表于 2025-3-29 09:29:22 | 只看該作者
Semiconductor Statistics,ve seen in Fig. 2.8. A discussion of these levels can be confined to the first Brillouin zone. We saw in the last chapter that due to the crystal periodicity, the electron wave functions, which in one dimension are . exp(i . x), also have to be periodic (.). Hence, from . and . we obtain . or . wher
46#
發(fā)表于 2025-3-29 13:14:42 | 只看該作者
47#
發(fā)表于 2025-3-29 16:28:07 | 只看該作者
Carrier Diffusion Processes,current . = -....., where .. is proportional to the electron mobility due to the Einstein relation (4.10.12). In this chapter we will investigate the diffusion of . carriers in local variations in the type of doping, which is so typical for p-n junctions and bipolar transistors.
48#
發(fā)表于 2025-3-29 21:12:29 | 只看該作者
Scattering Processes in a Spherical One-Valley Model,anomagnetic, thermoelectric, thermomagnetic, etc., effects. We will now treat the important scattering mechanisms and find the energy dependence of τm. For those cases where a power law is found, the magnitude of the exponent . will be determined.
49#
發(fā)表于 2025-3-30 02:38:56 | 只看該作者
50#
發(fā)表于 2025-3-30 05:50:02 | 只看該作者
Carrier Transport in the Warped-Sphere Model,his case are warped spheres which have already been discussed in Sect. 2.4 (Figs. 2.28a–2.28c). In the zincblende lattice typical for III–V compounds, there is no center of inversion, in contrast to the diamond lattice.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 17:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盘山县| 通州市| 周至县| 陇南市| 宝坻区| 方城县| 库伦旗| 庆元县| 富锦市| 阿尔山市| 太仓市| 措勤县| 县级市| 巴南区| 蕲春县| 龙游县| 岢岚县| 峨眉山市| 仲巴县| 宁陵县| 大同市| 石渠县| 珲春市| 凌源市| 浙江省| 沈阳市| 澄江县| 许昌县| 保定市| SHOW| 大悟县| 平凉市| 阳高县| 阜城县| 岳池县| 馆陶县| 通许县| 盐亭县| 油尖旺区| 湘阴县| 留坝县|