找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Programming and Applications; An International Sym Anthony V. Fiacco,Kenneth O. Kortanek Conference proceedings 1983 Springer

[復制鏈接]
樓主: Coenzyme
31#
發(fā)表于 2025-3-26 21:44:41 | 只看該作者
32#
發(fā)表于 2025-3-27 03:19:42 | 只看該作者
33#
發(fā)表于 2025-3-27 06:33:50 | 只看該作者
34#
發(fā)表于 2025-3-27 10:59:03 | 只看該作者
A Saddle Value Characterization of Fan’s Equilibrium Pointsly, defined over the simplex S which have certain positivity properties. A real number . is termed an . of the system {f,g} if and only if there exists a point z*, termed an ., satisfying g(z*) = λ*f(z*). Fan shows that λ. exists and is positive and that z* is unique such that ...In this paper we co
35#
發(fā)表于 2025-3-27 17:21:21 | 只看該作者
Duality in Semi-Infinite Linear Programminge no duality gap between the program and its formal dual (with attainment of value in the dual), for every linear objective function. Earlier work provided sufficient conditions for no duality gap for all linear objective functions, or a necessary and sufficient condition for no duality gap for a fi
36#
發(fā)表于 2025-3-27 20:15:56 | 只看該作者
37#
發(fā)表于 2025-3-28 01:05:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:10:19 | 只看該作者
Globalization of Locally Convergent Algorithms for Nonlinear Optimization Problems with Constraints along the homotopy path, only the active constraints are considered. We assume that there exists only a finite number of critical points, i.e. points where the index set of the active constraints changes. Then a theoretic concept of a globally convergent algorithm consists of the following three ph
39#
發(fā)表于 2025-3-28 06:37:46 | 只看該作者
40#
發(fā)表于 2025-3-28 13:58:14 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
五莲县| 弋阳县| 岳阳县| 华宁县| 赤城县| 唐海县| 南投市| 临湘市| 集贤县| 彰化市| 平塘县| 丽水市| 廊坊市| 星座| 云梦县| 安平县| 麻栗坡县| 海口市| 突泉县| 英德市| 库车县| 田阳县| 敖汉旗| 忻城县| 长寿区| 高邑县| 鹤山市| 光山县| 米林县| 长子县| 大冶市| 麻江县| 宁陕县| 扎鲁特旗| 通城县| 正蓝旗| 无为县| 册亨县| 龙陵县| 庆阳市| 嘉善县|