找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes; Quasi-Coherent Torsi Leonid Positselski Book 2023 The Editor(s)

[復制鏈接]
樓主: Dopamine
11#
發(fā)表于 2025-3-23 11:33:52 | 只看該作者
12#
發(fā)表于 2025-3-23 16:11:25 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:43 | 只看該作者
Quasi-Coherent Torsion Sheaves,quasi-coherent torsion sheaves on an ind-scheme is a central object of study in this book. The main result of this chapter is that, on a reasonable strict ind-concentrated ind-scheme, the category of quasi-coherent torsion sheaves is a Grothendieck abelian category.
14#
發(fā)表于 2025-3-24 02:07:24 | 只看該作者
Flat Affine Ind-Schemes over Ind-Schemes of Ind-Finite Type,fine morphism of schemes. The aim of this chapter is to describe the semitensor product functor as the composition of the left derived *-restriction and the right derived !-restriction of the external tensor product.
15#
發(fā)表于 2025-3-24 02:21:20 | 只看該作者
16#
發(fā)表于 2025-3-24 09:34:26 | 只看該作者
17#
發(fā)表于 2025-3-24 11:55:34 | 只看該作者
Ind-Schemes of Ind-Finite Type and the ,-Tensor Product,e of ind-finite type over the field .. The aim of this chapter is to describe the cotensor product functor, for a suitable choice of the dualizing complex on ., as the derived !-restriction to the diagonal of the external tensor product on . of two given complexes of quasi-coherent sheaves on ..
18#
發(fā)表于 2025-3-24 18:44:40 | 只看該作者
Invariance Under Postcomposition with a Smooth Morphism,tructions of Chaps. 7–8, including the semiderived category of quasi-coherent torsion sheaves on . and the semitensor product operation on it, are preserved by the passage from the flat affine moprhism . to the flat affine morphism ..
19#
發(fā)表于 2025-3-24 20:08:49 | 只看該作者
20#
發(fā)表于 2025-3-24 23:10:27 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
淮滨县| 宜城市| 咸宁市| 武宁县| 巴林右旗| 榆社县| 肇州县| 乐安县| 玛多县| 北宁市| 昌图县| 桑日县| 大兴区| 大宁县| 濮阳县| 正安县| 太保市| 龙里县| 冕宁县| 疏勒县| 藁城市| 通河县| 玛沁县| 广汉市| 栾城县| 青岛市| 息烽县| 林西县| 开封市| 博乐市| 铁力市| 庐江县| 连城县| 肇源县| 哈巴河县| 彭阳县| 龙陵县| 庄浪县| 顺平县| 昭觉县| 桦川县|