找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Self-Dual Codes and Invariant Theory; Gabriele Nebe,Eric M. Rains,Neil J.A. Sloane Book 2006 Springer-Verlag Berlin Heidelberg 2006 Code.E

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 13:19:02 | 只看該作者
Further Examples of Self-Dual Codes,This chapter describes some families of self-dual codes that cannot be obtained from representations of quasisimple form rings: codes over Z/mZ (§8.1), then the special cases of codes over Z/4Z (§8.2) and Z/8Z (§8.3), codes over more general Galois rings (§8.4), and codes over F. + F. . with . = 0 (§8.5).
12#
發(fā)表于 2025-3-23 15:15:22 | 只看該作者
13#
發(fā)表于 2025-3-23 18:31:33 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:56 | 只看該作者
The Main Theorems,d in §5.5. They show that under quite general conditions, the invariant ring of the Clifford-Weil group .(.) associated with a finite representation . of a form ring is spanned by the complete weight enumerators of self-dual isotropic codes of Type . (and arbitrary length).
15#
發(fā)表于 2025-3-24 04:59:43 | 只看該作者
16#
發(fā)表于 2025-3-24 10:16:00 | 只看該作者
17#
發(fā)表于 2025-3-24 10:46:59 | 只看該作者
18#
發(fā)表于 2025-3-24 17:31:45 | 只看該作者
1431-1550 theorem about the weight enumerators of self-dual codes and their connections with invariant theory. In the past 35 years there have been hundreds of papers written about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory whi
19#
發(fā)表于 2025-3-24 21:00:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:23:35 | 只看該作者
The Category Quad,and in the proofs of the main theorems in Chapter 5. Another application will be the definition of the Witt group of representations of a form ring (§4.6). This will be used to define the universal Clifford-Weil group associated with a finite form ring (see §5.4).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
塘沽区| 泸州市| 深水埗区| 九寨沟县| 汝州市| 兴化市| 柘荣县| 仙桃市| 客服| 苍梧县| 拉孜县| 永德县| 正安县| 黄龙县| 罗江县| 东阳市| 无极县| 江安县| 广安市| 东台市| 革吉县| 武清区| 乌兰浩特市| 贡山| 名山县| 阜新市| 安溪县| 新巴尔虎左旗| 凤冈县| 南漳县| 扬中市| 潮安县| 凯里市| 灵寿县| 石城县| 嘉峪关市| 麦盖提县| 观塘区| 海盐县| 东海县| 抚松县|