找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Self-Dual Codes and Invariant Theory; Gabriele Nebe,Eric M. Rains,Neil J.A. Sloane Book 2006 Springer-Verlag Berlin Heidelberg 2006 Code.E

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 13:19:02 | 只看該作者
Further Examples of Self-Dual Codes,This chapter describes some families of self-dual codes that cannot be obtained from representations of quasisimple form rings: codes over Z/mZ (§8.1), then the special cases of codes over Z/4Z (§8.2) and Z/8Z (§8.3), codes over more general Galois rings (§8.4), and codes over F. + F. . with . = 0 (§8.5).
12#
發(fā)表于 2025-3-23 15:15:22 | 只看該作者
13#
發(fā)表于 2025-3-23 18:31:33 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:56 | 只看該作者
The Main Theorems,d in §5.5. They show that under quite general conditions, the invariant ring of the Clifford-Weil group .(.) associated with a finite representation . of a form ring is spanned by the complete weight enumerators of self-dual isotropic codes of Type . (and arbitrary length).
15#
發(fā)表于 2025-3-24 04:59:43 | 只看該作者
16#
發(fā)表于 2025-3-24 10:16:00 | 只看該作者
17#
發(fā)表于 2025-3-24 10:46:59 | 只看該作者
18#
發(fā)表于 2025-3-24 17:31:45 | 只看該作者
1431-1550 theorem about the weight enumerators of self-dual codes and their connections with invariant theory. In the past 35 years there have been hundreds of papers written about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory whi
19#
發(fā)表于 2025-3-24 21:00:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:23:35 | 只看該作者
The Category Quad,and in the proofs of the main theorems in Chapter 5. Another application will be the definition of the Witt group of representations of a form ring (§4.6). This will be used to define the universal Clifford-Weil group associated with a finite form ring (see §5.4).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仲巴县| 三门峡市| 桃园市| 巴里| 榆林市| 尚义县| 克拉玛依市| 南川市| 卢湾区| 孟连| 平阳县| 遂宁市| 福安市| 罗城| 调兵山市| 古蔺县| 赞皇县| 莆田市| 新兴县| 福海县| 东港市| 祁门县| 宜城市| 伊川县| 灵宝市| 徐闻县| 凤山县| 织金县| 高尔夫| 布拖县| 新化县| 边坝县| 托克逊县| 武威市| 旬阳县| 亚东县| 枝江市| 丽水市| 文安县| 唐山市| 合作市|