找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Second-order Learning in Developmental Evaluation; New Methods for Comp Andrew Mitchell Book 2019 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: Encounter
21#
發(fā)表于 2025-3-25 04:39:14 | 只看該作者
The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
22#
發(fā)表于 2025-3-25 11:27:43 | 只看該作者
Andrew MitchellProvides a Developmental Education framework which augments traditional monitoring and evaluation.Details a case study investigating the sustainability of a town in the UK.Investigates how project lea
23#
發(fā)表于 2025-3-25 12:02:37 | 只看該作者
http://image.papertrans.cn/s/image/863178.jpg
24#
發(fā)表于 2025-3-25 19:51:38 | 只看該作者
https://doi.org/10.1007/978-3-319-99371-3project learning; developmental evaluation; enactive cognition; cognitive science; second-order learning
25#
發(fā)表于 2025-3-25 21:32:46 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:53 | 只看該作者
Andrew Mitchellinator offers the user several models to build predictive systems with. This paper explores which ML models (in Wekinator) are the most useful for predicting an output in the context of interactive music composition. We use two performance gestures for piano, with opposing datasets, to train availab
27#
發(fā)表于 2025-3-26 06:43:52 | 只看該作者
Andrew Mitchellinator offers the user several models to build predictive systems with. This paper explores which ML models (in Wekinator) are the most useful for predicting an output in the context of interactive music composition. We use two performance gestures for piano, with opposing datasets, to train availab
28#
發(fā)表于 2025-3-26 09:38:10 | 只看該作者
29#
發(fā)表于 2025-3-26 12:39:49 | 只看該作者
30#
發(fā)表于 2025-3-26 16:55:54 | 只看該作者
Andrew Mitchellperformers from a randomly chosen parameter set. Our experiments are conducted on datasets from the recently expanded UCR time series archive. We demonstrate the usability improvements to randomised BOSS with a case study using a large whale acoustics dataset for which BOSS proved infeasible.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
志丹县| 凤凰县| 冀州市| 五大连池市| 白河县| 于都县| 米泉市| 新干县| 遵义市| 紫金县| 鹿泉市| 襄樊市| 卓尼县| 兰考县| 邯郸市| 梧州市| 北辰区| 德庆县| 大名县| 商水县| 克拉玛依市| 桂东县| 婺源县| 株洲县| 长白| 南汇区| 昌平区| 大冶市| 资中县| 石家庄市| 万荣县| 高邑县| 仙桃市| 高唐县| 德钦县| 稷山县| 安义县| 楚雄市| 凤山市| 讷河市| 新密市|