找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Scalable Uncertainty Management; 14th International C Jesse Davis,Karim Tabia Conference proceedings 2020 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: Animosity
31#
發(fā)表于 2025-3-27 00:19:08 | 只看該作者
Miguel Couceiro,Erkko Lehtonen,Laurent Miclet,Henri Prade,Gilles Richard. Finally, we compare our finite element method — which leads to a generalized eigenvalue problem- with another method co-developed by some of us [18, 11], which is based on the determination of poles of the scattering operator (multipole expansion method).
32#
發(fā)表于 2025-3-27 03:56:58 | 只看該作者
Jandson S. Ribeiro,Viorica Sofronie-Stokkermans,Matthias Thimm. Finally, we compare our finite element method — which leads to a generalized eigenvalue problem- with another method co-developed by some of us [18, 11], which is based on the determination of poles of the scattering operator (multipole expansion method).
33#
發(fā)表于 2025-3-27 06:21:45 | 只看該作者
34#
發(fā)表于 2025-3-27 12:08:27 | 只看該作者
Arne Decadt,Jasper De Bock,Gert de Cooman. Finally, we compare our finite element method — which leads to a generalized eigenvalue problem- with another method co-developed by some of us [18, 11], which is based on the determination of poles of the scattering operator (multipole expansion method).
35#
發(fā)表于 2025-3-27 15:21:04 | 只看該作者
Andrea Campagner,Davide Ciucci. Finally, we compare our finite element method — which leads to a generalized eigenvalue problem- with another method co-developed by some of us [18, 11], which is based on the determination of poles of the scattering operator (multipole expansion method).
36#
發(fā)表于 2025-3-27 18:04:36 | 只看該作者
Yassir Idmessaoud,Didier Dubois,Jérémie Guiochets and cells are fundamentally mechanical in origin, and the mechanics of many biomolecules demonstrate scaling laws that are non-classical to traditional structural mechanics and elasticity. ..This compilation of the scientific papers presented at the meeting will prove invaluable to researchers in
37#
發(fā)表于 2025-3-28 00:52:20 | 只看該作者
38#
發(fā)表于 2025-3-28 02:32:43 | 只看該作者
39#
發(fā)表于 2025-3-28 06:32:31 | 只看該作者
40#
發(fā)表于 2025-3-28 14:03:46 | 只看該作者
Floris Persiau,Jasper De Bock,Gert de Coomanural mechanics and elasticity. ..This compilation of the scientific papers presented at the meeting will prove invaluable to researchers in 978-94-007-3113-4978-90-481-3348-2Series ISSN 1875-3507 Series E-ISSN 1875-3493
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 11:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱芜市| 泰州市| 城口县| 保定市| 奎屯市| 江达县| 宁夏| 安仁县| 贵州省| 乾安县| 会同县| 蓬安县| 乐平市| 三都| 孟津县| 马公市| 尉犁县| 镇坪县| 遵义市| 常宁市| 冷水江市| 凤庆县| 静乐县| 永兴县| 湘乡市| 三门县| 安岳县| 肃北| 甘孜| 永昌县| 巫溪县| 长岛县| 于都县| 四会市| 汾西县| 神木县| 竹溪县| 阿图什市| 土默特左旗| 广丰县| 合作市|