找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing; 10th International C Dominik ?l?zak,Guoyin Wang,Yiyu Yao Conference proceeding

[復制鏈接]
樓主: fathom
11#
發(fā)表于 2025-3-23 11:23:08 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:41 | 只看該作者
13#
發(fā)表于 2025-3-23 19:05:48 | 只看該作者
Algebraic Approach to Generalized Rough Setsor any atomic complete Boolean algebra . with the set . of atoms, a map . is an algebraic lower approximation operator if and only if there exists a binary relation . on . such that . = .., where .. is the lower approximation defined by the binary relation .. This generalizes the results given by Ya
14#
發(fā)表于 2025-3-24 01:06:37 | 只看該作者
Logic for Rough Sets with Rough Double Stone Algebraic Semanticser approximation set, upper approximation set>. An important result is that the collection of rough sets of an approximation space can be made into a regular double Stone algebra. In this paper, a logic for rough sets, i.e., the sequent calculus corresponding to rough double Stone algebra, is propos
15#
發(fā)表于 2025-3-24 04:10:53 | 只看該作者
16#
發(fā)表于 2025-3-24 09:16:14 | 只看該作者
Pairwise Cores in Information Systemsall reducts of the information system). A notion of a pairwise core (2-core), which naturally extends the definition of a core into the case of pairs of attributes is presented. Some useful features concerned with the graph representation of pairwise cores are discussed..The paper presents also prac
17#
發(fā)表于 2025-3-24 12:24:05 | 只看該作者
18#
發(fā)表于 2025-3-24 16:33:48 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:58 | 只看該作者
20#
發(fā)表于 2025-3-25 02:14:18 | 只看該作者
Proximity Spaces of Exact Setsssociated modal Boolean algebra of exact sets. The present essay generalizes the axiomatic notion of a PFS to tolerance (reflexive, symmetric) relations, where the universe of exact sets forms a modal ortho-lattice. An example of this general notion is provided by the tolerance relation of “matching” over ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
磐石市| 屏边| 枝江市| 新建县| 长宁区| 嘉荫县| 九龙城区| 余姚市| 白朗县| 余庆县| 新蔡县| 沐川县| 藁城市| 永仁县| 德州市| 山阴县| 绵竹市| 崇义县| 晋州市| 沅江市| 郑州市| 太白县| 灵丘县| 屯留县| 那坡县| 彝良县| 大港区| 昌都县| 浙江省| 雅安市| 年辖:市辖区| 黄大仙区| 法库县| 安达市| 惠州市| 葵青区| 丹东市| 乐东| 滨州市| 合作市| 鄂托克前旗|