找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Robot Learning from Human Teachers; Sonia Chernova,Andrea L. Thomaz Book 2014 Springer Nature Switzerland AG 2014

[復(fù)制鏈接]
樓主: DUCT
11#
發(fā)表于 2025-3-23 12:16:14 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:27 | 只看該作者
Introduction, the real world. Today, and for the foreseeable future, it is not possible to go to a store and bring home a robot that will clean your house, cook your breakfast, and do your laundry. These everyday tasks, while seemingly simple, contain many variations and complexities that pose insurmountable challenges for today’s machine learning algorithms.
13#
發(fā)表于 2025-3-23 19:57:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:43:08 | 只看該作者
Learning Low-Level Motion Trajectories, . in which they would be used (covered in Chapter 5). In the literature there are several different names given to this class of “l(fā)ow-level” action learning, thus in this chapter we use the terms . and . interchangeably.
15#
發(fā)表于 2025-3-24 02:34:50 | 只看該作者
Learning High-Level Tasks,ning a reactive task policy representing a functional mapping of states to actions, learning a task plan, and learning the task objectives. We go on to discuss the role that feature selection, reference frame identification and object affordances play in the learning process.
16#
發(fā)表于 2025-3-24 08:32:46 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:57 | 只看該作者
Human Social Learning, process. Although robots can also learn from observing demonstrations not directed at them, albeit less efficiently, the scenario we address here is primarily the one where a person is explicitly trying to teach the robot something in particular.
18#
發(fā)表于 2025-3-24 18:22:48 | 只看該作者
19#
發(fā)表于 2025-3-24 20:12:13 | 只看該作者
Learning Low-Level Motion Trajectories,algorithm can be designed to work with. We now turn our attention to the wide range of algorithms for building skill and task models from demonstration data. In this chapter we focus on approaches that learn new motions or primitive actions. The motivation behind learning new motions is typically th
20#
發(fā)表于 2025-3-25 02:47:17 | 只看該作者
Learning High-Level Tasks, (Figure 5.1). While the line between high-level and low-level learning is not concrete, the distinction we make here is that techniques in this chapter assume the existence of a discrete set of action primitives that can be combined to perform a more complex behavior. As in the previous chapter, we
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安化县| 济南市| 河源市| 吴堡县| 治多县| 潮州市| 广宗县| 台安县| 靖远县| 韶关市| 邢台县| 东台市| 长沙县| 大厂| 闸北区| 凌源市| 紫阳县| 元江| 孙吴县| 清涧县| 西丰县| 上犹县| 佛坪县| 和硕县| 无极县| 高碑店市| 金溪县| 澄迈县| 洛川县| 阿尔山市| 墨江| 山东| 乾安县| 大同县| 内丘县| 广安市| 修文县| 特克斯县| 大冶市| 泸水县| 镇原县|