找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rings, Monoids and Module Theory; AUS-ICMS 2020, Sharj Ayman Badawi,Jim Coykendall Conference proceedings 2021 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: 抵押證書
31#
發(fā)表于 2025-3-26 21:20:20 | 只看該作者
32#
發(fā)表于 2025-3-27 04:46:39 | 只看該作者
33#
發(fā)表于 2025-3-27 05:23:26 | 只看該作者
34#
發(fā)表于 2025-3-27 11:36:15 | 只看該作者
35#
發(fā)表于 2025-3-27 17:33:53 | 只看該作者
,Tame-Wild Dichotomy for Commutative Noetherian Rings—A Survey,ings do these categories have wild representation type?” We also address the question: “Can a Noetherian ring have both tame and wild representation type?” We provide an outline for showing that many tame rings are not wild.
36#
發(fā)表于 2025-3-27 17:58:21 | 只看該作者
37#
發(fā)表于 2025-3-27 22:50:47 | 只看該作者
Bounded and Finite Factorization Domains, domain if it is atomic and for every nonzero nonunit ., there is a positive integer . such that for any factorization . of?. into irreducibles . in ., the inequality . holds. In addition, we say that . is a finite factorization domain if it is atomic and every nonzero nonunit in . factors into irre
38#
發(fā)表于 2025-3-28 04:24:03 | 只看該作者
Factorization and Irreducibility in Modules,sors. In this chapter we study module-theoretic generalizations of some notions they studied. Our focus is on formulating appropriate definitions of the various kinds of “irreducibility” and “atomicity.” We study the consequences of these definitions and investigate to what extent ring-theoretic res
39#
發(fā)表于 2025-3-28 08:02:57 | 只看該作者
On ,-potent Domains and ,-homogeneous Ideals, maximal .-ideal that contains a .-homogeneous ideal is called potent and the same name bears a domain all of whose maximal .-ideals are potent. One among the various aims of this article is to indicate what makes a .-ideal of finite type a .-homogeneous ideal, where and how we can find one, what th
40#
發(fā)表于 2025-3-28 13:38:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌黎县| 六安市| 南城县| 长兴县| 合作市| 张家口市| 高淳县| 溧水县| 肇源县| 蕉岭县| 长武县| 犍为县| 勃利县| 治多县| 重庆市| 达州市| 同江市| 冷水江市| 依兰县| 柳江县| 西吉县| 南汇区| 开化县| 海丰县| 灵川县| 米易县| 通海县| 西乌| 喀什市| 巴彦县| 霍州市| 余姚市| 平顶山市| 岐山县| 屏东市| 清水县| 长顺县| 隆子县| 陇西县| 团风县| 孟州市|