找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rigorous Time Slicing Approach to Feynman Path Integrals; Daisuke Fujiwara Book 2017 Springer Japan KK 2017 Feynman path integral.Feynman

[復(fù)制鏈接]
樓主: memoir
11#
發(fā)表于 2025-3-23 10:13:52 | 只看該作者
12#
發(fā)表于 2025-3-23 16:43:54 | 只看該作者
Statement of Main Resultssemi-classical asymptotic formula called Birkhoff’s formula is proved from the standpoint of oscillatory integrals. In this chapter, these results as well as others are explained. Proofs will be given in subsequent chapters.
13#
發(fā)表于 2025-3-23 18:48:07 | 只看該作者
Feynman Path Integral and Schr?dinger Equationtain the second term of the semi-classical asymptotic and prove that it satisfies the second transport equation. Our discussion of this is different from the usual method originated by Birkhoff (Bull Am Math Soc 39:681–700 (1933) [11]). Our method enables us to obtain the bound of the remainder term.
14#
發(fā)表于 2025-3-24 00:59:03 | 只看該作者
Path Integrals and Oscillatory Integralsegral techniques and is given a definite value under some conditions. We give an example of a sufficient condition for that in Sect.?.. Furthermore, in such a case the stationary phase method, which is given by Theorem . in Sect.?., gives the value of the oscillatory integral asymptotically as ..
15#
發(fā)表于 2025-3-24 02:57:01 | 只看該作者
Path Integrals and Oscillatory Integralse factor . oscillates rapidly and as a consequence there occurs a large scale of cancellation. Such an integral is commonly treated by oscillatory integral techniques and is given a definite value under some conditions. We give an example of a sufficient condition for that in Sect.?.. Furthermore, i
16#
發(fā)表于 2025-3-24 06:46:21 | 只看該作者
Statement of Main Resultsies Assumption . and if the time interval is short, because it is an oscillatory integral that satisfies Assumption .. Furthermore, the time slicing approximation of Feynman path integrals converges to a limit as .. The limit turns out to be the fundamental solution of the Schr?dinger equation. The
17#
發(fā)表于 2025-3-24 12:49:17 | 只看該作者
Feynman Path Integral and Schr?dinger Equationthe Schr?dinger equation. The main?tool is the .-boundedness theorem proof of which is left to Chap.?. in Part II. By the way we shall prove that the main term of the semi-classical asymptotic of the fundamental solution of the Schr?dinger equation satisfies the transport equations. At the end we ob
18#
發(fā)表于 2025-3-24 15:55:12 | 只看該作者
Stationary Phase Method for Oscillatory Integrals over a Space of Large Dimensionm is given, which is independent of the dimension. This theorem enables us to discuss the time slicing approximation of Feynman path integrals when the dimension of the space goes to .. This was the central tool of our discussions in Sect.?5.4 of Chap.?..
19#
發(fā)表于 2025-3-24 21:21:14 | 只看該作者
0921-3767 y the time slicing method, the method Feynman himself used, This book proves that Feynman‘s original definition of the path integral actually converges to the fundamental solution of the Schr?dinger equation at least in the short term if the potential is differentiable sufficiently many times and it
20#
發(fā)表于 2025-3-24 23:46:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
将乐县| 句容市| 云林县| 西贡区| 自治县| 潼关县| 印江| 巫山县| 沙洋县| 阿拉尔市| 镇巴县| 云安县| 安塞县| 庆元县| 盐亭县| 苏尼特左旗| 和田市| 景洪市| 霍山县| 青铜峡市| 阳东县| 兴宁市| 华安县| 拉萨市| 米泉市| 海伦市| 仙桃市| 离岛区| 尼木县| 天津市| 吕梁市| 汝州市| 张掖市| 英吉沙县| 延寿县| 太仓市| 盖州市| 鹤岗市| 丰宁| 安平县| 封丘县|