找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rigid Body Dynamics; A Lagrangian Approac Hamad M. Yehia Book 2022 Springer Nature Switzerland AG 2022 Rigid body dynamics.Lagrangian mecha

[復(fù)制鏈接]
樓主: 非決定性
21#
發(fā)表于 2025-3-25 04:06:14 | 只看該作者
The Motion of a Body with No Fixed Point chapter, we study certain problems of motion when the body is not fixed from any point. For the moment, we shall not begin with constructing a Lagrangian for the motion. To keep the applicability of the equations of motion as wide as possible, we assume that the body is subject to a set of forces,
22#
發(fā)表于 2025-3-25 09:28:59 | 只看該作者
23#
發(fā)表于 2025-3-25 13:27:20 | 只看該作者
The Rigid Body in a Potential Fieldut can also be easily extended to cases of motion of a rigid body acted upon by general forces which admit symmetry about an axis fixed in space and passing through the fixed point. For such fields, the potential is a function of the Eulerian angles ., and the precession angle is a cyclic coordinate
24#
發(fā)表于 2025-3-25 16:54:05 | 只看該作者
The Problem of Motion of a Body in a Liquidxtending in all directions and at rest at infinity. Strictly speaking, this problem belongs to the field of fluid dynamics. The problem evolved namely in this way. The ordinary differential equations of motion of the solid are simultaneously solved with partial differential equation governing the mo
25#
發(fā)表于 2025-3-25 22:09:05 | 只看該作者
26#
發(fā)表于 2025-3-26 01:51:38 | 只看該作者
The Most General Integrable Cases in Rigid Body Dynamicsof the hierarchy of integrable cases in rigid body dynamics. That level is inaccessible for all direct methods used in mechanics in the past. Methods which investigate the existence of analytical or polynomial integrals and the existence of single-valued solutions of the equations of motion are equa
27#
發(fā)表于 2025-3-26 07:22:33 | 只看該作者
28#
發(fā)表于 2025-3-26 11:37:09 | 只看該作者
The Rigid Body Acted upon by a Skew Combination of Fieldsering problems of rigid body dynamics in more general settings. In spite of its actuality and importance for scientific and technological purposes and although it is a direct logical generalization of the classical problem, the problem of motion of a rigid body under the action of asymmetric forces
29#
發(fā)表于 2025-3-26 13:05:11 | 只看該作者
30#
發(fā)表于 2025-3-26 20:26:26 | 只看該作者
The Motion of a Body with No Fixed Pointgian for the motion. To keep the applicability of the equations of motion as wide as possible, we assume that the body is subject to a set of forces, which are not necessarily time independent and which may not have a potential.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
斗六市| 寿光市| 岚皋县| 城步| 二连浩特市| 招远市| 上虞市| 开平市| 建阳市| 普宁市| 江孜县| 襄垣县| 衡阳市| 临澧县| 宁阳县| 石林| 汨罗市| 甘谷县| 肥乡县| 霸州市| 通山县| 乐亭县| 泾川县| 蕉岭县| 奉化市| 同江市| 中西区| 浦江县| 兴义市| 乌拉特前旗| 新建县| 盐池县| 罗定市| 行唐县| 辽宁省| 东阳市| 宜兰市| 万载县| 普格县| 尚义县| 阿瓦提县|