找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rigid Analytic Geometry and Its Applications; Jean Fresnel,Marius Put Textbook 2004 Springer Science+Business Media New York 2004 Area.Mer

[復(fù)制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 11:16:26 | 只看該作者
Affinoid Algebras,he set of maximal ideals of some finitely generated algebra over .. Rigid (analytic) spaces over a complete non-archimedean valued field . are formed in a similar way. A rigid space is obtained by glueing affinoid spaces with respect to a certain Grothendieck topology which we will call a .-topology
12#
發(fā)表于 2025-3-23 16:56:49 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:14 | 只看該作者
Abelian Varieties,n analytic torus . over a non-archimedean valued field . is introduced. The analytic structure of the analytification . of an algebraic torus . over ., with character group ., is investigated, as well as lattices Λ ? . and the structure of the analytic torus .. For analytic line bundles on ., here r
14#
發(fā)表于 2025-3-23 23:21:39 | 只看該作者
Points of Rigid Spaces, Rigid Cohomology,icular, there are abelian sheaves . on . such that the stalk . is 0 for every . ∈ .. The obvious reason is that the Grothendieck topology on . is not local enough. The first concept of a sufficient collection of points for a rigid space is presented in [198]. This concept, its generalizations and ri
15#
發(fā)表于 2025-3-24 03:23:52 | 只看該作者
Etale Cohomology of Rigid Spaces,ell known for real and complex varieties. Especially for algebraic varieties over a field of positive characteristic, this theory produces surprising analogies with the algebraic topology of real or complex varieties. One of the early successes is of course the proof of the Weil conjectures. For rig
16#
發(fā)表于 2025-3-24 07:21:26 | 只看該作者
17#
發(fā)表于 2025-3-24 11:08:36 | 只看該作者
18#
發(fā)表于 2025-3-24 18:41:24 | 只看該作者
19#
發(fā)表于 2025-3-24 19:59:08 | 只看該作者
20#
發(fā)表于 2025-3-25 00:19:31 | 只看該作者
Abelian Varieties,he uniformization of general abelian varieties over . is sketched. The results, presented in this chapter, are the work of many authors, A. Grothendieck, M. Raynaud, D. Mumford, L. Gerritzen, Y. Manin, V. Drinfeld, S. Bosch, W. Lütkebohmert et al.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拜泉县| 桦川县| 乡宁县| 抚顺市| 团风县| 游戏| 高尔夫| 共和县| 汝阳县| 临泉县| 铁岭县| 兰州市| 如皋市| 泌阳县| 汉阴县| 德钦县| 扶沟县| 女性| 保山市| 会东县| 莎车县| 海口市| 蕉岭县| 舟山市| 天峻县| 磴口县| 夏邑县| 吉林市| 崇义县| 朔州市| 丹寨县| 南华县| 楚雄市| 礼泉县| 柏乡县| 涪陵区| 行唐县| 互助| 西充县| 略阳县| 延安市|