找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry; Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 2004Latest edition Springer-Verlag Berlin Heidelberg 2004

[復(fù)制鏈接]
樓主: 監(jiān)督
11#
發(fā)表于 2025-3-23 10:41:06 | 只看該作者
12#
發(fā)表于 2025-3-23 15:22:16 | 只看該作者
https://doi.org/10.1007/978-3-642-18855-8Minimal surface; Riemannian geometry; Riemannian goemetry; covariant derivative; curvature; manifold; rela
13#
發(fā)表于 2025-3-23 20:26:45 | 只看該作者
14#
發(fā)表于 2025-3-24 00:55:10 | 只看該作者
Riemannian submanifolds,In this chapter, we study the relations between the Riemannian Geometry of a submanifold and that of the ambient space. It is well known that surfaces of the Euclidean space were the first examples of Riemannian manifolds to be studied. In fact, the first truly Riemannian geometry result is due to Gauss, and roughly says the following.
15#
發(fā)表于 2025-3-24 04:08:14 | 只看該作者
16#
發(fā)表于 2025-3-24 08:55:02 | 只看該作者
Differential Manifolds,ce a sphere, or a torus, we can decompose this surface into a finite number of parts such that each of them can be bijectively mapped into a simply-connected region of the Euclidean plane.” This is the beginning of the third chapter of “ Le? ons sur la Gé omé trie des espaces de Riemann” by Elie Car
17#
發(fā)表于 2025-3-24 13:50:47 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:07 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:53 | 只看該作者
Textbook 2004Latest edition this third edition. During these years, Riemannian Geometry has undergone many dramatic developments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our “mentor” Marcel Berger. However, Riemannian Geometry is not only a fascinating field in itsel
20#
發(fā)表于 2025-3-24 23:13:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
逊克县| 新竹市| 石阡县| 伊吾县| 辽阳市| 万安县| 九江市| 黑水县| 改则县| 旬邑县| 大埔县| 鹿泉市| 玛多县| 长宁县| 桂林市| 东阳市| 清苑县| 周至县| 烟台市| 哈巴河县| 米林县| 乌拉特中旗| 昌吉市| 田东县| 高平市| 浠水县| 呼图壁县| 内江市| 建昌县| 天峻县| 鄂托克前旗| 那曲县| 昌邑市| 浪卡子县| 龙井市| 玛纳斯县| 霍林郭勒市| 汉寿县| 额敏县| 乌兰察布市| 施秉县|