找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry; Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 2004Latest edition Springer-Verlag Berlin Heidelberg 2004

[復制鏈接]
樓主: 監(jiān)督
11#
發(fā)表于 2025-3-23 10:41:06 | 只看該作者
12#
發(fā)表于 2025-3-23 15:22:16 | 只看該作者
https://doi.org/10.1007/978-3-642-18855-8Minimal surface; Riemannian geometry; Riemannian goemetry; covariant derivative; curvature; manifold; rela
13#
發(fā)表于 2025-3-23 20:26:45 | 只看該作者
14#
發(fā)表于 2025-3-24 00:55:10 | 只看該作者
Riemannian submanifolds,In this chapter, we study the relations between the Riemannian Geometry of a submanifold and that of the ambient space. It is well known that surfaces of the Euclidean space were the first examples of Riemannian manifolds to be studied. In fact, the first truly Riemannian geometry result is due to Gauss, and roughly says the following.
15#
發(fā)表于 2025-3-24 04:08:14 | 只看該作者
16#
發(fā)表于 2025-3-24 08:55:02 | 只看該作者
Differential Manifolds,ce a sphere, or a torus, we can decompose this surface into a finite number of parts such that each of them can be bijectively mapped into a simply-connected region of the Euclidean plane.” This is the beginning of the third chapter of “ Le? ons sur la Gé omé trie des espaces de Riemann” by Elie Car
17#
發(fā)表于 2025-3-24 13:50:47 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:07 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:53 | 只看該作者
Textbook 2004Latest edition this third edition. During these years, Riemannian Geometry has undergone many dramatic developments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our “mentor” Marcel Berger. However, Riemannian Geometry is not only a fascinating field in itsel
20#
發(fā)表于 2025-3-24 23:13:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
祁东县| 怀来县| 漯河市| 湛江市| 彭山县| 南陵县| 麦盖提县| 新邵县| 浦城县| 饶河县| 东城区| 佛坪县| 丹棱县| 德化县| 大城县| 叙永县| 泰兴市| 西宁市| 龙川县| 喀喇沁旗| 桃园市| 新丰县| 神池县| 安顺市| 扶风县| 孟津县| 和静县| 长寿区| 长治县| 宜兰市| 呼玛县| 施秉县| 兴隆县| 涞源县| 武义县| 宁南县| 巍山| 广灵县| 南皮县| 北票市| 武宁县|