找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Riemannian Computing in Computer Vision; Pavan K. Turaga,Anuj Srivastava Book 2016 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Clinton
51#
發(fā)表于 2025-3-30 08:14:23 | 只看該作者
Lie-Theoretic Multi-Robot Localization relative pose and orientation information can be provided, and it is scalable in that the computational complexity does not increase with the size of the robot team and increases linearly with the number of measurements taken from nearby robots. The proposed approach is validated with simulation in
52#
發(fā)表于 2025-3-30 14:34:29 | 只看該作者
Covariance Weighted Procrustes Analysisape and covariance structure is difficult due to the inherent non-identifiability. The method requires the specification of constraints to carry out inference, and we discuss some possible practical choices. We illustrate the methodology using data from fish silhouettes and mouse vertebra images.
53#
發(fā)表于 2025-3-30 17:29:07 | 只看該作者
Elastic Shape Analysis of Functions, Curves and Trajectoriests. A fundamental tool in shape analysis is the construction and implementation of geodesic paths between shapes. This is used to accomplish a variety of tasks, including the definition of a metric to compare shapes, the computation of intrinsic statistics for a set of shapes, and the definition of
54#
發(fā)表于 2025-3-30 21:20:00 | 只看該作者
Elastic Shape Analysis of Surfaces and Imageshods by computing geodesic paths between highly articulated surfaces and shape statistics of manually generated surfaces. We also describe applications?of this framework to image registration and medical diagnosis.
55#
發(fā)表于 2025-3-31 04:40:58 | 只看該作者
A General Least Squares Regression Framework on Matrix Manifolds for Computer Vision visual tracking, object categorization, and activity recognition to human interaction recognition. Our experiments reveal that the proposed method yields competitive performance, including state-of-the-art results on challenging activity recognition benchmarks.
56#
發(fā)表于 2025-3-31 05:19:34 | 只看該作者
in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).978-3-319-36095-9978-3-319-22957-7
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 07:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖宇县| 乌恰县| 郯城县| 邵东县| 伊川县| 孙吴县| 阳信县| 英吉沙县| 镇远县| 云南省| 庆元县| 睢宁县| 曲沃县| 灵武市| 南京市| 汶川县| 红桥区| 濮阳县| 沁水县| 昌邑市| 阿拉尔市| 全椒县| 江口县| 巴楚县| 长海县| 郓城县| 宾川县| 五原县| 肇东市| 扎鲁特旗| 保康县| 大荔县| 双江| 丹阳市| 昌邑市| 巴彦县| 卓资县| 洪洞县| 绥江县| 南郑县| 临颍县|