找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Computing in Computer Vision; Pavan K. Turaga,Anuj Srivastava Book 2016 The Editor(s) (if applicable) and The Author(s), under

[復制鏈接]
樓主: Clinton
31#
發(fā)表于 2025-3-26 22:11:14 | 只看該作者
Elastic Shape Analysis of Surfaces and Imageson, deformation, averaging, statistical modeling, and random sampling of surface shapes. A crucial property of both of these frameworks is that they are invariant to reparameterizations of surfaces. Thus, they result in natural shape comparisons and statistics. The first method we describe is based
32#
發(fā)表于 2025-3-27 02:15:41 | 只看該作者
Designing a Boosted Classifier on Riemannian Manifoldsescriptors lying on a Riemannian manifold. This chapter describes a boosted classification approach that incorporates the a priori knowledge of the geometry of the Riemannian space. The presented classifier incorporated into a rejection cascade and applied to single image human detection task. Resul
33#
發(fā)表于 2025-3-27 05:39:37 | 只看該作者
34#
發(fā)表于 2025-3-27 12:00:37 | 只看該作者
Domain Adaptation Using the Grassmann Manifoldact that given data may have variations that can be difficult to incorporate into well-known, classical methods. One of these sources of variation is that of differing data sources, often called domain adaptation. Many domain adaptation techniques use the notion of a shared representation to attempt
35#
發(fā)表于 2025-3-27 17:37:27 | 只看該作者
36#
發(fā)表于 2025-3-27 20:31:50 | 只看該作者
37#
發(fā)表于 2025-3-28 00:41:35 | 只看該作者
Book 2016s. This edited volume?includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the m
38#
發(fā)表于 2025-3-28 03:46:04 | 只看該作者
39#
發(fā)表于 2025-3-28 07:05:54 | 只看該作者
40#
發(fā)表于 2025-3-28 11:48:56 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 03:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
滨海县| 东乡县| 淳安县| 枣庄市| 神木县| 微博| 泰和县| 扎赉特旗| 曲沃县| 长岛县| 临安市| 正安县| 栾川县| 隆昌县| 常熟市| 山丹县| 闵行区| 福贡县| 萍乡市| 丘北县| 都昌县| 萨嘎县| 江阴市| 西充县| 健康| 龙泉市| 达拉特旗| 南漳县| 夏河县| 彭水| 黄浦区| 陈巴尔虎旗| 汕头市| 宕昌县| 林口县| 德保县| 楚雄市| 深水埗区| 新民市| 吉木萨尔县| 筠连县|