找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ridges in Image and Data Analysis; David Eberly Book 1996 Springer Science+Business Media Dordrecht 1996 Riemannian geometry.computer visi

[復制鏈接]
樓主: 風俗習慣
11#
發(fā)表于 2025-3-23 09:46:12 | 只看該作者
Book 1996a concrete definition is provided. In almost all cases the concept is used for very specific ap- plications. When analyzing images or data sets, it is very natural for a scientist to measure critical behavior by considering maxima or minima of the data. These critical points are relatively easy to c
12#
發(fā)表于 2025-3-23 15:41:47 | 只看該作者
13#
發(fā)表于 2025-3-23 20:28:57 | 只看該作者
14#
發(fā)表于 2025-3-23 22:49:20 | 只看該作者
Ridges in Riemannian Geometry,or is the identity. The same concepts are definable even if ?. is assigned an arbitrary positive definite metric tensor. The extension to Riemannian geometry requires tensor calculus which is discussed in Section 2.3. Most notably the constructions involve the ideas of covariant and contravariant tensors and of covariant differentiation.
15#
發(fā)表于 2025-3-24 04:14:28 | 只看該作者
Ridges of Functions Defined on Manifolds,d—dimensional ridges of a function defined on an n—dimensional manifold embedded in IR.. Section 5.2 provides an alternative definition for ridges based on principal curvatures and principal directions. Section 5.3 discusses a ridge definition which is an application of the definition of Section 5.2 to level sets.
16#
發(fā)表于 2025-3-24 09:51:04 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:40 | 只看該作者
Ridges in Euclidean Geometry,for maximality of .(.) is made in a restricted neighborhood of .. A similar concept of . generalizes local minima, but since local minima of . are local maxima of —., it is sufficient to study only the concept of ridge.
18#
發(fā)表于 2025-3-24 15:22:33 | 只看該作者
Ridges in Riemannian Geometry, is the set of .-tuples of real numbers. An implicit assumption was made that ?., as a geometric entity, is standard Euclidean space whose metric tensor is the identity. The same concepts are definable even if ?. is assigned an arbitrary positive definite metric tensor. The extension to Riemannian g
19#
發(fā)表于 2025-3-24 20:10:51 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:40 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
水城县| 九龙坡区| 罗田县| 邓州市| 泸水县| 分宜县| 北辰区| 库尔勒市| 三明市| 云梦县| 叶城县| 遵义县| 建德市| 东光县| 江津市| 曲水县| 开原市| 玉林市| 金山区| 青河县| 安阳市| 昭通市| 邢台县| 福建省| 曲松县| 阿城市| 仁化县| 长阳| 临邑县| 广宁县| 秦安县| 金坛市| 太仆寺旗| 香港 | 定兴县| 岚皋县| 沁源县| 叙永县| 汉中市| 宣化县| 马山县|