找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Resource-Efficient Medical Image Analysis; First MICCAI Worksho Xinxing Xu,Xiaomeng Li,Huazhu Fu Conference proceedings 2022 The Editor(s)

[復(fù)制鏈接]
樓主: energy
11#
發(fā)表于 2025-3-23 12:27:54 | 只看該作者
12#
發(fā)表于 2025-3-23 16:56:23 | 只看該作者
13#
發(fā)表于 2025-3-23 20:32:54 | 只看該作者
14#
發(fā)表于 2025-3-23 23:36:34 | 只看該作者
Self-supervised Antigen Detection Artificial Intelligence (SANDI), on an average of about 300–1000 annotations per cell type. By striking a fine balance between minimal expert guidance and the power of deep learning to learn similarity within abundant data, SANDI presents new opportunities for efficient, large-scale learning for multiplexed imaging data.
15#
發(fā)表于 2025-3-24 06:26:23 | 只看該作者
,Single Domain Generalization via?Spontaneous Amplitude Spectrum Diversification,proposed approach first converts the image into frequency domain using the Fourier transform, and then spontaneously generates diverse samples by editing the amplitude spectrum using a pool of randomization operations. The proposed approach is established upon the assumption that the high-level sema
16#
發(fā)表于 2025-3-24 07:13:54 | 只看該作者
,Triple-View Feature Learning for?Medical Image Segmentation,is strategy enables triple-view learning of generic medical image datasets. Bespoke overlap-based and boundary-based loss functions are tailored to the different stages of the training. The segmentation results are evaluated on four publicly available benchmark datasets including Ultrasound, CT, MRI
17#
發(fā)表于 2025-3-24 13:14:23 | 只看該作者
18#
發(fā)表于 2025-3-24 16:10:47 | 只看該作者
,Leverage Supervised and?Self-supervised Pretrain Models for?Pathological Survival Analysis via?a?Sieady trained supervised and self-supervised models for pathological survival analysis. In this paper, we present a simple and low-cost joint representation tuning (JRT) to aggregate task-agnostic vision representation (supervised ImageNet pretrained models) and pathological specific feature represen
19#
發(fā)表于 2025-3-24 20:07:33 | 只看該作者
20#
發(fā)表于 2025-3-25 02:22:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云阳县| 增城市| 玛曲县| 贺兰县| 霍山县| 越西县| 泗洪县| 远安县| 资兴市| 马公市| 含山县| 滦平县| 陇西县| 盐边县| 宜兴市| 沙坪坝区| 仲巴县| 平陆县| 隆化县| 新巴尔虎右旗| 齐齐哈尔市| 瓮安县| 黑水县| 科技| 喀喇| 出国| 吉水县| 铁力市| 枝江市| 清原| 马边| 临朐县| 德令哈市| 即墨市| 综艺| 阿合奇县| 绥棱县| 嘉祥县| 屏边| 军事| 嘉义市|