找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Resolution of Singularities; A research textbook Herwig Hauser,Joseph Lipman,Adolfo Quirós Textbook 2000 Springer Basel AG 2000 Algebraisc

[復(fù)制鏈接]
樓主: 贊美
51#
發(fā)表于 2025-3-30 08:34:57 | 只看該作者
52#
發(fā)表于 2025-3-30 16:20:03 | 只看該作者
53#
發(fā)表于 2025-3-30 16:56:06 | 只看該作者
Toric Varieties and Toric Resolutionsn toric geometry, including fans, support functions, and ampleness criteria. The paper also explores alternate constructions of toric varieties and nonnormal toric varieties. Then we turn our attention to singularities. We will discuss blowing-up in the toric context and resolution of singularities
54#
發(fā)表于 2025-3-30 21:09:28 | 只看該作者
55#
發(fā)表于 2025-3-31 02:09:14 | 只看該作者
56#
發(fā)表于 2025-3-31 07:44:10 | 只看該作者
Resolving Singularities of Plane Analytic Branches with one Toric Morphismre . is the number of Puiseux exponents of (., 0). We show, using the specialization of (. 0) to (.., 0), that the same toric morphisms .Σ→?. which induce an embedded resolution of singularities of (.., 0) also resolve the singularities of (., 0) ? (? ?., 0), the embedding being defined by elements
57#
發(fā)表于 2025-3-31 12:13:40 | 只看該作者
Excellent Surfaces and Their Taut Resolutiondded in three-space and defined over an algebraically closed field of arbitrary characteristic. The proof of strong embedded resolution we describe here combines arguments and techniques of O. Zariski, H. Hironaka, S. Abhyankar and the author.
58#
發(fā)表于 2025-3-31 15:14:27 | 只看該作者
59#
發(fā)表于 2025-3-31 17:46:01 | 只看該作者
Equisingularity and Simultaneous Resolution of Singularitiesans of a generic local projection to affine .-space. A possibly more intuitive concept of equisingularity can be based on stratification by simultaneous resolvability of singularities. The two approaches are known to be equivalent for families of plane curve singularities. In higher dimension we ask
60#
發(fā)表于 2025-3-31 23:07:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 22:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安义县| 成都市| 如皋市| 皮山县| 木里| 漯河市| 东平县| 通州区| 新闻| 丹阳市| 旬阳县| 南陵县| 腾冲县| 衡水市| 炎陵县| 米林县| 隆化县| 桐城市| 吴江市| 山阴县| 额尔古纳市| 札达县| 双江| 大港区| 天长市| 绥棱县| 鹤山市| 临泽县| 罗城| 历史| 鄂尔多斯市| 武威市| 波密县| 徐闻县| 上思县| 鄄城县| 信丰县| 龙江县| 额尔古纳市| 周口市| 吉安县|