找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Reshaping Convex Polyhedra; Joseph O‘Rourke,Costin V?lcu Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licens

[復(fù)制鏈接]
樓主: FAULT
21#
發(fā)表于 2025-3-25 05:42:56 | 只看該作者
Introduction to Part IWe begin with some background on convex polyhedra, setting the context for our results. The discussion in this section will be mostly informal and elementary, with formal definitions and statements deferred to later chapters.
22#
發(fā)表于 2025-3-25 10:16:45 | 只看該作者
Tailoring via SculptingIn this chapter we complete the proof that one slice of . by plane . can be tailored to the face of . lying in ., following the sequence.The previous chapter established the g-domes → pyramids reduction. Here we first prove the relatively straightforward slice → g-domes process and then concentrate on the more complex pyramid → tailoring step.
23#
發(fā)表于 2025-3-25 15:27:33 | 只看該作者
CrestsIn this chapter we revisit the suggestion made at the end of Chap. . that the digons to reduce one pyramid to its base could be cut out all at once, thus yielding an additional tailoring method.
24#
發(fā)表于 2025-3-25 18:15:46 | 只看該作者
25#
發(fā)表于 2025-3-25 23:54:32 | 只看該作者
26#
發(fā)表于 2025-3-26 03:46:34 | 只看該作者
Vertex-Merging Reductions and Slit GraphsIn this chapter we initiate the systematic study of repeated vertex-mergings, already used in Chap. .. We introduce vertex-merging reductions and their associated slit graphs and derive their basic properties for later use.
27#
發(fā)表于 2025-3-26 05:46:50 | 只看該作者
Planar Spiral Slit TreeThe previous chapter showed that if the slit graph . of a vm-reduction is a tree, then we can unfold . to the plane, and possibly to a non-overlapping net.
28#
發(fā)表于 2025-3-26 10:48:07 | 只看該作者
29#
發(fā)表于 2025-3-26 12:39:32 | 只看該作者
30#
發(fā)表于 2025-3-26 18:31:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雅安市| 桐城市| 丹棱县| 海林市| 扬州市| 平陆县| 甘德县| 青海省| 札达县| 铜陵市| 普兰店市| 策勒县| 佛冈县| 天台县| 天峻县| 阿拉善右旗| 灌阳县| 延边| 澄江县| 正镶白旗| 揭东县| 乌兰县| 花莲市| 额济纳旗| 安陆市| 宝兴县| 开江县| 定襄县| 芦山县| 汝州市| 昆明市| 甘德县| 广州市| 大方县| 同仁县| 新兴县| 若尔盖县| 乳源| 竹北市| 新竹县| 襄城县|