找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reshaping Convex Polyhedra; Joseph O‘Rourke,Costin V?lcu Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licens

[復制鏈接]
樓主: FAULT
21#
發(fā)表于 2025-3-25 05:42:56 | 只看該作者
Introduction to Part IWe begin with some background on convex polyhedra, setting the context for our results. The discussion in this section will be mostly informal and elementary, with formal definitions and statements deferred to later chapters.
22#
發(fā)表于 2025-3-25 10:16:45 | 只看該作者
Tailoring via SculptingIn this chapter we complete the proof that one slice of . by plane . can be tailored to the face of . lying in ., following the sequence.The previous chapter established the g-domes → pyramids reduction. Here we first prove the relatively straightforward slice → g-domes process and then concentrate on the more complex pyramid → tailoring step.
23#
發(fā)表于 2025-3-25 15:27:33 | 只看該作者
CrestsIn this chapter we revisit the suggestion made at the end of Chap. . that the digons to reduce one pyramid to its base could be cut out all at once, thus yielding an additional tailoring method.
24#
發(fā)表于 2025-3-25 18:15:46 | 只看該作者
25#
發(fā)表于 2025-3-25 23:54:32 | 只看該作者
26#
發(fā)表于 2025-3-26 03:46:34 | 只看該作者
Vertex-Merging Reductions and Slit GraphsIn this chapter we initiate the systematic study of repeated vertex-mergings, already used in Chap. .. We introduce vertex-merging reductions and their associated slit graphs and derive their basic properties for later use.
27#
發(fā)表于 2025-3-26 05:46:50 | 只看該作者
Planar Spiral Slit TreeThe previous chapter showed that if the slit graph . of a vm-reduction is a tree, then we can unfold . to the plane, and possibly to a non-overlapping net.
28#
發(fā)表于 2025-3-26 10:48:07 | 只看該作者
29#
發(fā)表于 2025-3-26 12:39:32 | 只看該作者
30#
發(fā)表于 2025-3-26 18:31:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
会泽县| 防城港市| 金乡县| 盐源县| 海南省| 乡宁县| 新乡县| 吴江市| 高台县| 女性| 太仓市| 平山县| 会东县| 大冶市| 涟水县| 苏尼特左旗| 北碚区| 宁海县| 大英县| 手机| 唐山市| 双辽市| 甘谷县| 密山市| 绍兴县| 浪卡子县| 江阴市| 清水县| 青铜峡市| 临城县| 蓬溪县| 涿鹿县| 当涂县| 蒲城县| 临朐县| 泗阳县| 宁河县| 邢台县| 信丰县| 行唐县| 堆龙德庆县|