找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Research in Computer Science; 6th Conference, CRI Paulin Melatagia Yonta,Kamel Barkaoui,Omer-Blaise Conference proceedings 2024 The Edito

[復(fù)制鏈接]
樓主: inroad
41#
發(fā)表于 2025-3-28 15:26:17 | 只看該作者
,Time Aware Implicit Social Influence Estimation to?Enhance Recommender Systems Performances,icant role in our daily lives. However, with the constantly growing addition of items on these platforms, it becomes challenging for users to select the products that interest them. Hence, the implementation of recommender systems to facilitate this selection process. To enhance these recommender sy
42#
發(fā)表于 2025-3-28 21:38:27 | 只看該作者
,Analysis of?COVID-19 Coughs: From the?Mildest to?the?Most Severe Form, a?Realistic Classification Un over 600 million positive cases and over 6 million deaths worldwide. Therefore, an efficient, inexpensive, and ubiquitous diagnostic tool is essential to help fight lung disease and the COVID-19 crisis. Deep learning and machine learning algorithms can be used to analyze the cough sounds of infect
43#
發(fā)表于 2025-3-28 23:25:38 | 只看該作者
,SLCDeepETC: An On-Demand Analysis Ready Data Pipeline on?Sentinel-1 Single Look Complex for?Deep Legle Look Complex products from Sentinel-1 to predict some environmental phenomena using Deep Learning. By retaining all original sensor measurements, it has been proven that interferometry data on Single Look Complex products, when analyzed with Deep Learning, can better inform data restoration, coh
44#
發(fā)表于 2025-3-29 06:42:02 | 只看該作者
45#
發(fā)表于 2025-3-29 09:36:02 | 只看該作者
46#
發(fā)表于 2025-3-29 13:58:12 | 只看該作者
47#
發(fā)表于 2025-3-29 17:28:50 | 只看該作者
,Explaining Meta-learner’s Predictions: Case of?Corporate CO2 Emissions,fore necessary for companies to control and reduce their pollution levels, and this requires knowing the amount of CO. emissions that can be produced and identifying the factors responsible for it. Several works have been carried out with the aim of predicting the quantity of CO. emitted at the comp
48#
發(fā)表于 2025-3-29 20:42:26 | 只看該作者
49#
發(fā)表于 2025-3-30 02:32:01 | 只看該作者
,A Hybrid Algorithm Based on?Tabu Search and?K-Means for?Solving the?Traveling Salesman Problem,earch (TS). In this hybrid approach, we first apply the K-means algorithm to group cities into several clusters. Then we use tabu search to explore the solution space to optimise the path within each cluster. This avoids getting stuck in local optima and allows us to explore new, potentially better
50#
發(fā)表于 2025-3-30 04:38:02 | 只看該作者
,Hybridization of?a?Recurrent Neural Network by?Quadratic Programming for?Combinatory Optimization: ss, but they are still incomplete because they don’t take into account the changing trend of electricity demand in buildings. In this paper, we propose a novel approach to minimizing joule loss using a hybridization of a recurrent neural network (RNN) and quadratic programming (QP). The RNN is used
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江陵县| 兰坪| 莱阳市| 界首市| 九龙县| 墨玉县| 乌兰察布市| 太仓市| 镇江市| 耿马| 措勤县| 类乌齐县| 和硕县| 松滋市| 鄱阳县| 同心县| 临湘市| 湖州市| 桓台县| 新巴尔虎左旗| 北碚区| 平潭县| 澎湖县| 玉田县| 潜山县| 门源| 丰县| 宜州市| 鄂托克旗| 台南市| 尚志市| 黄山市| 孟津县| 合水县| 怀集县| 进贤县| 剑川县| 紫阳县| 尼玛县| 哈巴河县| 华蓥市|