找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Research in Computational Topology 2; Ellen Gasparovic,Vanessa Robins,Katharine Turner Book 2022 The Editor(s) (if applicable) and The Aut

[復制鏈接]
樓主: VERSE
31#
發(fā)表于 2025-3-26 22:14:41 | 只看該作者
Book 2022ntaining the proceedings of the second workshop for Women in Computational Topology (WinCompTop) as well as papers solicited from the broader WinCompTop community. The multidisciplinary and international WinCompTop workshop provided an exciting and unique opportunity for women in diverse locations a
32#
發(fā)表于 2025-3-27 02:26:20 | 只看該作者
33#
發(fā)表于 2025-3-27 06:27:04 | 只看該作者
The Persistent Homology of Dual Digital Image Constructions, two commonly used constructions (corresponding to direct and indirect digital adjacencies) can give different results for the same image. The two constructions are almost dual to each other, and we use this relationship to extend and modify the cubical complexes to become dual filtered cell complex
34#
發(fā)表于 2025-3-27 12:20:38 | 只看該作者
Morse-Based Fibering of the Persistence Rank Invariant,dules are still lacking in the available topological data analysis toolboxes. Other issues, such as interpretation and visualization of the output, remain difficult to solve. Software visualizing multi-parameter persistence diagrams is currently only available for 2-dimensional persistence modules.
35#
發(fā)表于 2025-3-27 17:42:00 | 只看該作者
36#
發(fā)表于 2025-3-27 17:47:46 | 只看該作者
Tile-Transitive Tilings of the Euclidean and Hyperbolic Planes by Ribbons,ariant equivalence. The hyperbolic case is relevant to self-assembly of branched polymers. Our result is achieved by combining and extending known methods for enumerating crystallographic disk-like tilings. We obtain a natural way of describing all possible stabiliser subgroups of tile-transitive ti
37#
發(fā)表于 2025-3-27 23:42:03 | 只看該作者
38#
發(fā)表于 2025-3-28 02:39:48 | 只看該作者
39#
發(fā)表于 2025-3-28 10:17:03 | 只看該作者
40#
發(fā)表于 2025-3-28 12:52:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
德昌县| 盐山县| 盐津县| 阿合奇县| 侯马市| 霍邱县| 梁山县| 黔西| 海淀区| 田阳县| 肃北| 从江县| 夹江县| 布尔津县| 罗江县| 怀安县| 阿巴嘎旗| 葫芦岛市| 察雅县| 嵊泗县| 清流县| 彩票| 河北省| 平南县| 兴隆县| 江北区| 任丘市| 独山县| 武夷山市| 张家界市| 临夏县| 汉沽区| 滦平县| 漳平市| 浦江县| 青川县| 镇安县| 合山市| 中西区| 万荣县| 徐水县|