找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of SU(2,1) in Fourier Term Modules; Roelof W. Bruggeman,Roberto J. Miatello Book 2023 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
樓主: gingerly
11#
發(fā)表于 2025-3-23 11:45:38 | 只看該作者
12#
發(fā)表于 2025-3-23 17:12:33 | 只看該作者
Introduction,book. We summarize the main results on Fourier term modules in four theorems. We give an overview of applications to automorphic forms, considering also automorphic forms with moderate exponential growth.
13#
發(fā)表于 2025-3-23 20:54:32 | 只看該作者
The Lie Group SU(2,1) and Subgroups,aratory chapter, we fix a standard realization . of ., and consider the representation theory of the maximal unipotent subgroup . and of the maximal compact subgroup . in an Iwasawa decomposition .. We need to understand the realizations of irreducible representations of . and of . in spaces of func
14#
發(fā)表于 2025-3-23 23:08:30 | 只看該作者
15#
發(fā)表于 2025-3-24 04:41:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:31:25 | 只看該作者
Application to Automorphic Forms,rms are required to have at most polynomial growth at the cusps. Here we also define automorphic forms with moderate exponential growth. A growth condition on the modular form implies properties of the Fourier expansion. For ., an automorphic form with Fourier terms that have polynomial growth has p
17#
發(fā)表于 2025-3-24 13:07:32 | 只看該作者
Book 2023oup with a non-abelian unipotent subgroup. It considers the “abelian” Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the “non-abelian” modules, described via theta functions. A complete description of the submodule structure of all Fourier term m
18#
發(fā)表于 2025-3-24 14:51:01 | 只看該作者
19#
發(fā)表于 2025-3-24 20:22:13 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:34 | 只看該作者
Application to Automorphic Forms,ition on the modular form implies properties of the Fourier expansion. For ., an automorphic form with Fourier terms that have polynomial growth has polynomial growth itself. For . this does not necessarily hold..We consider also the Fourier expansion of families of automorphic forms, and of generating vectors of irreducible automorphic modules.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
横峰县| 贵州省| 泸西县| 岳池县| 会昌县| 湖口县| 永吉县| 徐闻县| 墨玉县| 桃园市| 太康县| 邳州市| 马尔康县| 林西县| 大化| 绩溪县| 陕西省| 新巴尔虎右旗| 莒南县| 彭山县| 宾川县| 新疆| 福贡县| 互助| 米泉市| 安阳市| 元阳县| 白沙| 九龙县| 安岳县| 张家港市| 稷山县| 东乌珠穆沁旗| 依兰县| 湘潭市| 九江市| 颍上县| 兰溪市| 青州市| 宁南县| 抚松县|