找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of Reductive Groups; In Honor of the 60th Monica Nevins,Peter E. Trapa Book 2015 Springer International Publishing Switzerl

[復(fù)制鏈接]
樓主: Retina
51#
發(fā)表于 2025-3-30 12:06:46 | 只看該作者
978-3-319-79483-9Springer International Publishing Switzerland 2015
52#
發(fā)表于 2025-3-30 16:25:28 | 只看該作者
53#
發(fā)表于 2025-3-30 19:12:06 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/r/image/827496.jpg
54#
發(fā)表于 2025-3-30 22:31:55 | 只看該作者
55#
發(fā)表于 2025-3-31 04:48:10 | 只看該作者
56#
發(fā)表于 2025-3-31 06:46:12 | 只看該作者
Centers and cocenters of 0-Hecke algebras,In this paper, we give explicit descriptions of the centers and cocenters of 0-Hecke algebras associated to finite Coxeter groups.
57#
發(fā)表于 2025-3-31 10:32:00 | 只看該作者
58#
發(fā)表于 2025-3-31 15:43:52 | 只看該作者
On conjugacy classes in a reductive group,Let . be a connected reductive group over an algebraically closed field. We define a decomposition of . into finitely many strata such that each stratum is a union of conjugacy classes of fixed dimension; the strata are indexed purely in terms of the Weyl group and the indexing set is independent of the characteristic.
59#
發(fā)表于 2025-3-31 21:30:00 | 只看該作者
60#
發(fā)表于 2025-3-31 23:41:16 | 只看該作者
Upper semicontinuity of KLV polynomials for certain blocks of Harish-Chandra modules,We show that the coefficients of Kazhdan–Lusztig–Vogan polynomials attached to certain blocks of Harish-Chandra modules satisfy a monotonicity property relative to the closure order on .-orbits in the flag variety.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 09:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合阳县| 贞丰县| 太湖县| 化州市| 永泰县| 肇庆市| 镇沅| 崇礼县| 长兴县| 仪陇县| 南平市| 徐水县| 洞头县| 中江县| 东海县| 时尚| 九龙坡区| 万安县| 临汾市| 达尔| 泰和县| 博爱县| 大名县| 都昌县| 龙里县| 四平市| 河池市| 搜索| 金华市| 曲靖市| 枣强县| 嘉祥县| 阿克陶县| 南昌市| 册亨县| 郧西县| 仁怀市| 巩留县| 景宁| 乐东| 藁城市|