找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory, Mathematical Physics, and Integrable Systems; In Honor of Nicolai Anton Alekseev,Edward Frenkel,Milen Yakimov Book

[復(fù)制鏈接]
樓主: 大腦
31#
發(fā)表于 2025-3-26 22:25:29 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:45 | 只看該作者
33#
發(fā)表于 2025-3-27 05:47:55 | 只看該作者
,Quantum Periodicity and Kirillov–Reshetikhin Modules,We give a proof of the periodicity of quantum .-systems of type ..?×?.. with certain spiral boundary conditions. Our proof is based on the categorification of the .-system in terms of the representation theory of quantum affine algebras, more precisely on relations between classes of Kirillov–Reshetikhin modules and of evaluation modules.
34#
發(fā)表于 2025-3-27 09:47:37 | 只看該作者
A Note on the E-Polynomials of a Stratification of the Hilbert Scheme of Points,The stratification associated with the number of generators of the ideals of the punctual Hilbert scheme of points on the affine plane has been studied since the 1970s. In this paper, we present an elegant formula for the E-polynomials of these strata.
35#
發(fā)表于 2025-3-27 15:27:57 | 只看該作者
,Irreducibility of the Wysiwyg Representations of Thompson’s Groups,We prove irreducibility and mutual inequivalence for certain unitary representations of R. Thompson’s groups F and T.
36#
發(fā)表于 2025-3-27 21:38:32 | 只看該作者
37#
發(fā)表于 2025-3-28 01:41:14 | 只看該作者
Tensor Product of the Fock Representation with Its Dual and the Deligne Category,We describe .-module structure of the tensor product of the Fock representation and its shifted dual using action of . on the abelian envelope of the Deligne’s category .(.).
38#
發(fā)表于 2025-3-28 06:06:58 | 只看該作者
39#
發(fā)表于 2025-3-28 06:59:06 | 只看該作者
40#
發(fā)表于 2025-3-28 10:42:10 | 只看該作者
https://doi.org/10.1007/978-3-030-78148-4Quantum Groups; Representation Theory; Categorifications; Kac-Moody Algebras; Invariants of knots and 3-
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 05:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安国市| 汝南县| 同德县| 甘泉县| 乌兰察布市| 民勤县| 林西县| 习水县| 黎平县| 介休市| 廉江市| 崇义县| 余干县| 青海省| 琼结县| 扎兰屯市| 合作市| 大理市| 仁寿县| 西畴县| 金门县| 崇义县| 丁青县| 郁南县| 台湾省| 米脂县| 濉溪县| 民乐县| 木里| 任丘市| 南江县| 尼勒克县| 郯城县| 清远市| 禄劝| 和龙市| 大悟县| 梅州市| 水富县| 紫阳县| 永平县|