找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory of Finite Groups and Finite-Dimensional Algebras; Proceedings of the C G. O. Michler,C. M. Ringel Conference proceedi

[復制鏈接]
樓主: HIV763
31#
發(fā)表于 2025-3-27 00:27:02 | 只看該作者
Partial characters of π-separable groupso new results here and few new ideas. Our purpose is to present in as accessible a manner as possible, the proofs of some theorems in the character theory of π-separable groups, and to explain the significance of these results.
32#
發(fā)表于 2025-3-27 03:01:38 | 只看該作者
Endotrivial modules and the Auslander-Reiten quiverng, then almost always the group algebra . is of wild representation type and there is no classification of all its indecomposable modules. Searching for a useful family of modules that could still be classified Dade was led to study .-modules, i.e. .-lattices whose .-endomorphisms form a permutatio
33#
發(fā)表于 2025-3-27 08:27:34 | 只看該作者
Polynomial representations of finite general linear groups in non-describing characteristicome Frobenius map of Γ. Then . is a finite group of Lie type. The .-modular representations of . for . = char . (the “describing” characteristic case) are closely related to rational representations of Γ, and thus results from the theory of reductive algebraic groups can be used to develop the repre
34#
發(fā)表于 2025-3-27 10:25:14 | 只看該作者
35#
發(fā)表于 2025-3-27 16:18:15 | 只看該作者
Decomposition numbers of finite groups of Lie type in non-defining characteristicact that block theory and Deligne-Lusztig theory are highly compatible for these groups. Since then a lot of work has been done on the ?-modular character theory of groups of Lie type where ? is a prime different from the underlying characteristic of the group. In this survey article I shall present
36#
發(fā)表于 2025-3-27 20:40:11 | 只看該作者
Counting blocks of defect zeroh . - is clearly the dimension of a suitable ideal in the center of the group algebra ., where . is a field of characteristic .. It is well known that this number is zero, if . has a non-trivial normal .-subgroup ., say. In this situation, however, one may still ask for the number of blocks of the f
37#
發(fā)表于 2025-3-28 00:52:03 | 只看該作者
38#
發(fā)表于 2025-3-28 02:33:50 | 只看該作者
39#
發(fā)表于 2025-3-28 06:16:27 | 只看該作者
40#
發(fā)表于 2025-3-28 12:15:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 20:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
霍邱县| 墨竹工卡县| 乌审旗| 新沂市| 莒南县| 沁水县| 普陀区| 桓仁| 福海县| 大埔区| 天等县| 乐安县| 固安县| 阆中市| 静安区| 城固县| 古田县| 堆龙德庆县| 西乌珠穆沁旗| 简阳市| 辽宁省| 庄浪县| 绥阳县| 同江市| 习水县| 梅州市| 台东县| 德化县| 普定县| 土默特右旗| 彩票| 安乡县| 玉田县| 玉环县| 武鸣县| 新密市| 揭东县| 桦川县| 高清| 岢岚县| 富裕县|