找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory of Finite Groups and Finite-Dimensional Algebras; Proceedings of the C G. O. Michler,C. M. Ringel Conference proceedi

[復(fù)制鏈接]
樓主: HIV763
31#
發(fā)表于 2025-3-27 00:27:02 | 只看該作者
Partial characters of π-separable groupso new results here and few new ideas. Our purpose is to present in as accessible a manner as possible, the proofs of some theorems in the character theory of π-separable groups, and to explain the significance of these results.
32#
發(fā)表于 2025-3-27 03:01:38 | 只看該作者
Endotrivial modules and the Auslander-Reiten quiverng, then almost always the group algebra . is of wild representation type and there is no classification of all its indecomposable modules. Searching for a useful family of modules that could still be classified Dade was led to study .-modules, i.e. .-lattices whose .-endomorphisms form a permutatio
33#
發(fā)表于 2025-3-27 08:27:34 | 只看該作者
Polynomial representations of finite general linear groups in non-describing characteristicome Frobenius map of Γ. Then . is a finite group of Lie type. The .-modular representations of . for . = char . (the “describing” characteristic case) are closely related to rational representations of Γ, and thus results from the theory of reductive algebraic groups can be used to develop the repre
34#
發(fā)表于 2025-3-27 10:25:14 | 只看該作者
35#
發(fā)表于 2025-3-27 16:18:15 | 只看該作者
Decomposition numbers of finite groups of Lie type in non-defining characteristicact that block theory and Deligne-Lusztig theory are highly compatible for these groups. Since then a lot of work has been done on the ?-modular character theory of groups of Lie type where ? is a prime different from the underlying characteristic of the group. In this survey article I shall present
36#
發(fā)表于 2025-3-27 20:40:11 | 只看該作者
Counting blocks of defect zeroh . - is clearly the dimension of a suitable ideal in the center of the group algebra ., where . is a field of characteristic .. It is well known that this number is zero, if . has a non-trivial normal .-subgroup ., say. In this situation, however, one may still ask for the number of blocks of the f
37#
發(fā)表于 2025-3-28 00:52:03 | 只看該作者
38#
發(fā)表于 2025-3-28 02:33:50 | 只看該作者
39#
發(fā)表于 2025-3-28 06:16:27 | 只看該作者
40#
發(fā)表于 2025-3-28 12:15:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秭归县| 屏东市| 申扎县| 瑞安市| 衢州市| 若尔盖县| 汶上县| 大厂| 绥化市| 上林县| 河西区| 无棣县| 广安市| 兴山县| 博兴县| 鸡西市| 綦江县| 伽师县| 塘沽区| 邳州市| 连山| 景洪市| 朔州市| 商南县| 朝阳市| 太谷县| 新巴尔虎右旗| 多伦县| 贵德县| 兴和县| 陆川县| 同心县| 汶川县| 抚远县| 阳原县| 闽清县| 虎林市| 望谟县| 黄平县| 玛曲县| 天水市|