找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory and Complex Geometry; Neil Chriss,Victor Ginzburg Book 2010 Birkh?user Boston 2010 D-modules.K-theory.algebraic geom

[復制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 03:52:09 | 只看該作者
22#
發(fā)表于 2025-3-25 08:24:25 | 只看該作者
Complex Semisimple Groups,We begin this section by reviewing some basic facts about semisimple groups and Lie algebras which we will need in the rest of this book. For further information the reader is referred to [Bour], [Bo3], [Hum], [Se1], and [Di].
23#
發(fā)表于 2025-3-25 12:20:11 | 只看該作者
24#
發(fā)表于 2025-3-25 19:17:32 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:22 | 只看該作者
Springer Theory for , (sl,),ur point is that absolutely the same machinery can be applied to construct representations of sl.(C) and perhaps other semisimple Lie algebras, cf. [Na2]. Many of the objects we use for studying the sl.(C)-case are analogous to the objects in the Weyl group case.
26#
發(fā)表于 2025-3-26 03:14:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:39:54 | 只看該作者
,Hecke Algebras and K–Theory,rking with lattices instead of vector spaces. This makes axiom 3.1.22(3) superfluous. Thus it is assumed only that, in addition to the above data, a subset .. ? .., called the dual root system, and a specified bijection . ? .., α ? ? are given such that the following three properties hold.
28#
發(fā)表于 2025-3-26 12:21:53 | 只看該作者
29#
發(fā)表于 2025-3-26 16:38:19 | 只看該作者
30#
發(fā)表于 2025-3-26 18:00:18 | 只看該作者
Springer Theory for , (sl,),ur point is that absolutely the same machinery can be applied to construct representations of sl.(C) and perhaps other semisimple Lie algebras, cf. [Na2]. Many of the objects we use for studying the sl.(C)-case are analogous to the objects in the Weyl group case.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 13:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大化| 大厂| 桐柏县| 静海县| 松溪县| 石阡县| 玛多县| 革吉县| 仁化县| 潼关县| 赣榆县| 赞皇县| 北宁市| 青冈县| 高邮市| 阿图什市| 建昌县| 余干县| 阿尔山市| 临西县| 当雄县| 抚松县| 万宁市| 林口县| 尖扎县| 新沂市| 郴州市| 都江堰市| 喀喇沁旗| 永福县| 山阴县| 高唐县| 新田县| 麻江县| 晴隆县| 镇康县| 邻水| 三门峡市| 绵竹市| 江北区| 大埔县|