找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory and Complex Geometry; Neil Chriss,Victor Ginzburg Book 2010 Birkh?user Boston 2010 D-modules.K-theory.algebraic geom

[復制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 03:52:09 | 只看該作者
22#
發(fā)表于 2025-3-25 08:24:25 | 只看該作者
Complex Semisimple Groups,We begin this section by reviewing some basic facts about semisimple groups and Lie algebras which we will need in the rest of this book. For further information the reader is referred to [Bour], [Bo3], [Hum], [Se1], and [Di].
23#
發(fā)表于 2025-3-25 12:20:11 | 只看該作者
24#
發(fā)表于 2025-3-25 19:17:32 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:22 | 只看該作者
Springer Theory for , (sl,),ur point is that absolutely the same machinery can be applied to construct representations of sl.(C) and perhaps other semisimple Lie algebras, cf. [Na2]. Many of the objects we use for studying the sl.(C)-case are analogous to the objects in the Weyl group case.
26#
發(fā)表于 2025-3-26 03:14:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:39:54 | 只看該作者
,Hecke Algebras and K–Theory,rking with lattices instead of vector spaces. This makes axiom 3.1.22(3) superfluous. Thus it is assumed only that, in addition to the above data, a subset .. ? .., called the dual root system, and a specified bijection . ? .., α ? ? are given such that the following three properties hold.
28#
發(fā)表于 2025-3-26 12:21:53 | 只看該作者
29#
發(fā)表于 2025-3-26 16:38:19 | 只看該作者
30#
發(fā)表于 2025-3-26 18:00:18 | 只看該作者
Springer Theory for , (sl,),ur point is that absolutely the same machinery can be applied to construct representations of sl.(C) and perhaps other semisimple Lie algebras, cf. [Na2]. Many of the objects we use for studying the sl.(C)-case are analogous to the objects in the Weyl group case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 16:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
济宁市| 涿鹿县| 宾阳县| 上犹县| 仙居县| 平武县| 龙川县| 洛阳市| 凭祥市| 阜宁县| 阳城县| 平顶山市| 正安县| 安丘市| 永济市| 乃东县| 绥滨县| 含山县| 集贤县| 汝南县| 萨嘎县| 台安县| 绵阳市| 于田县| 厦门市| 海南省| 吴旗县| 锦州市| 孟州市| 竹山县| 清涧县| 绥滨县| 兴海县| 九寨沟县| 米泉市| 彰武县| 甘孜县| 乳山市| 彰化市| 聊城市| 锡林浩特市|