找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory and Algebraic Geometry; A Conference Celebra Vladimir Baranovsky,Nicolas Guay,Travis Schedler Book 2022 Springer Natu

[復(fù)制鏈接]
樓主: Roosevelt
21#
發(fā)表于 2025-3-25 07:19:37 | 只看該作者
22#
發(fā)表于 2025-3-25 11:20:47 | 只看該作者
Totally Aspherical Parameters for Cherednik AlgebrasWe introduce the notion of a totally aspherical parameter for a rational Cherednik algebra. We get an explicit construction of the projective object defining the KZ functor for such parameters. We establish the existence of sufficiently many totally aspherical parameters for the groups .(., 1, .).
23#
發(fā)表于 2025-3-25 14:03:44 | 只看該作者
Microlocal Approach to Lusztig’s SymmetriesWe reformulate the De Concini-Toledano Laredo conjecture about the monodromy of the Casimir connection in terms of a relation between Lusztig’s symmetries of quantum group modules and the monodromy in the vanishing cycles of factorizable sheaves.
24#
發(fā)表于 2025-3-25 15:52:52 | 只看該作者
Vladimir Baranovsky,Nicolas Guay,Travis SchedlerExplores the influential work of Alexander Beilinson and Victor Ginzburg in algebraic geometry and representation theory.Contains cutting-edge research from leaders in the area, all of whom are deeply
25#
發(fā)表于 2025-3-25 20:46:29 | 只看該作者
Fourier-Sato Transform on Hyperplane Arrangementslogy, sheaf-theoretically, can be understood as cohomology with compact support, interesting operations on perverse sheaves usually combine the functors of the types . and . or, dually, the functors of the types . and . in the classical formalism of Grothendieck.
26#
發(fā)表于 2025-3-26 02:41:51 | 只看該作者
27#
發(fā)表于 2025-3-26 05:47:34 | 只看該作者
Fourier-Sato Transform on Hyperplane Arrangementslogy, sheaf-theoretically, can be understood as cohomology with compact support, interesting operations on perverse sheaves usually combine the functors of the types . and . or, dually, the functors of the types . and . in the classical formalism of Grothendieck.
28#
發(fā)表于 2025-3-26 09:03:54 | 只看該作者
The Semi-infinite Intersection Cohomology Sheaf-II: The Ran Space Versiont, denoted ., which we call the ...Unlike the situation of [.], this . is defined as the middle of extension of the constant (more precisely, dualizing) sheaf on the basic stratum, in a certain t-structure. We give several explicit descriptions and characterizations of .: we describe its !- and *- s
29#
發(fā)表于 2025-3-26 15:34:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:06:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 20:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
筠连县| 宜都市| 彝良县| 丰台区| 紫金县| 永春县| 青浦区| 西乡县| 阿拉善右旗| 东兰县| 阿鲁科尔沁旗| 加查县| 宁波市| 宣城市| 讷河市| 乐都县| 荔浦县| 浪卡子县| 东方市| 遂昌县| 册亨县| 祁连县| 龙陵县| 尼木县| 瑞丽市| 张家川| 吉水县| 团风县| 老河口市| 康定县| 蒙自县| 墨江| 军事| 伽师县| 改则县| 色达县| 濮阳县| 淮滨县| 北票市| 苏尼特左旗| 临沂市|