找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Renormalization Theory; Proceedings of the N G. Velo,A. S. Wightman Conference proceedings 1976 D. Reidel Publishing Company, Dordrecht, Ho

[復(fù)制鏈接]
樓主: negation
51#
發(fā)表于 2025-3-30 11:43:38 | 只看該作者
Joel S. Feldmanlassischen Differentialgeometrie. Das Problem ist wichtig für die Kartographie: jede Seite eines Atlas ist eine Abbildung eines Teils der Erd(kugel)oberfl?che in die Ebene. Man wei?, da? es keine l?ng entreuen Atlanten geben kann; hingegen gibt es sehr wohl winkeltreue Atlanten (z.B. durch stereogra
52#
發(fā)表于 2025-3-30 15:28:25 | 只看該作者
BPHZ Renormalization,Composite fields — local, covariant fields which are formally products of the “elementary” fields of a given theory — have played an important role in the theoretical developments of recent years, and promise to do so for many years to come.
53#
發(fā)表于 2025-3-30 18:12:22 | 只看該作者
The Power Counting Theorem for Feynman Integrals with Massless Propagators,Dyson’s power counting theorem is extended to the case where some of the mass parameters vanish. Weinberg’s ultraviolet convergence conditions are supplemented by infrared convergence conditions which combined are necessary and sufficient for the absolute convergence of Euclidean Feynman integrals.
54#
發(fā)表于 2025-3-30 21:43:25 | 只看該作者
Some Results on Dimensional Renormalization,In this lecture [1] we will give a definition of dimensionally regularized Feynman amplitudes and rules for the treatment of covariants (e.g. spin polynomials) which are quite different in spirit[2] from the ones given by Speer, but give equivalent results.
55#
發(fā)表于 2025-3-31 01:32:05 | 只看該作者
,Existence of Green’s Functions in Perturbative Q. E. D.,The purpose of this lecture is to report on some work, done in collaboration with P. Blanchard [1], which shows how, in the framework developped by H. Epstein and V. Glaser [2] one can prove the existence of Green’s functions in quantum electrodynamics (Q. E. D.).
56#
發(fā)表于 2025-3-31 05:28:45 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰和县| 扶绥县| 闵行区| 广州市| 本溪| 大关县| 长治县| 东丽区| 泊头市| 渝北区| 巴楚县| 夏津县| 建德市| 靖州| 天镇县| 永善县| 鄄城县| 栾川县| 徐汇区| 托里县| 仙桃市| 海城市| 钦州市| 泗洪县| 安多县| 洪泽县| 万州区| 西安市| 东阳市| 中江县| 安新县| 天门市| 雷州市| 温泉县| 昌乐县| 遵义市| 台南县| 石楼县| 龙门县| 瓮安县| 福贡县|