找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Remote Sensing Image Classification in R; Courage Kamusoko Book 2019 Springer Nature Singapore Pte Ltd. 2019 Remotely-Sensed Image Classif

[復(fù)制鏈接]
樓主: Malinger
11#
發(fā)表于 2025-3-23 10:33:38 | 只看該作者
Remote Sensing Digital Image Processing in R,nd temporal scales. Over the past decades, a plethora of image processing and classification methods have been developed and applied. The purpose of this chapter is to introduce remote sensing digital image processing and machine learning in R. The chapter will cover remote sensing image processing
12#
發(fā)表于 2025-3-23 14:48:52 | 只看該作者
Pre-processing,d in order to minimize sensor, solar, atmospheric and topographic effects. Generally, pre-processing focuses on radiometric and geometric correction (in particular georeferencing and image registration) of remotely-sensed imagery prior to image transformation or classification. Radiometric correctio
13#
發(fā)表于 2025-3-23 18:03:09 | 只看該作者
Image Transformation,erature review indicates that spectral and spatial indices can improve land use/cover classification accuracy. In this workbook, selected vegetation and texture indices will be computed from Landsat 5 TM imagery. The selected vegetation and texture indices will be used for image classification in Ch
14#
發(fā)表于 2025-3-23 23:23:51 | 只看該作者
15#
發(fā)表于 2025-3-24 02:54:39 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:21 | 只看該作者
Remote Sensing Digital Image Processing in R,his chapter is to introduce remote sensing digital image processing and machine learning in R. The chapter will cover remote sensing image processing and classification, a brief overview on R and RStudio, tutorial exercises, data and test site.
17#
發(fā)表于 2025-3-24 13:35:31 | 只看該作者
Image Classification,ing methods such as k-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), single Decision Trees (DT), Support Vector Machines (SVM) and Random Forests (RF) machine learning classifiers will be used for image classification. The tutorial exercises show that multidate Landsat 5 imagery and the RF method provide relatively good results.
18#
發(fā)表于 2025-3-24 16:42:42 | 只看該作者
Book 2019ncise and practical reference tutorial, which equips readers to immediately start using the software platform and R packages for image processing and classification...This book is divided into five chapters. Chapter 1 introduces remote sensing digital image processing in R, while chapter 2 covers pr
19#
發(fā)表于 2025-3-24 21:02:08 | 只看該作者
Pre-processing, geometric distortions due to sensor-Earth geometry variations, and then converting remotely-sensed imagery to real world coordinates on the Earth’s surface. In this workbook, pre-processing will focus mainly on radiometric correction and reprojection of Landsat imagery.
20#
發(fā)表于 2025-3-25 01:59:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谢通门县| 佛学| 互助| 奎屯市| 安义县| 汉源县| 大悟县| 平谷区| 临洮县| 绥化市| 蓬溪县| 平远县| 新干县| 秦安县| 金溪县| 印江| 阿鲁科尔沁旗| 通河县| 乌海市| 晋中市| 安溪县| 南江县| 余庆县| 沙河市| 长泰县| 双流县| 满城县| 林甸县| 黎川县| 江津市| 长春市| 萝北县| 荔浦县| 安康市| 任丘市| 饶河县| 沙雅县| 泰安市| 乌兰县| 金川县| 牟定县|