找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Relativity and Gravitation; 100 Years after Eins Ji?í Bi?ák,Tomá? Ledvinka Conference proceedings 2014 Springer International Publishing Sw

[復(fù)制鏈接]
樓主: Intermediary
21#
發(fā)表于 2025-3-25 07:12:58 | 只看該作者
Geometrostatics: The Geometry of Static Space-Timesheory. Moreover, we present a novel physical interpretation of the level sets of the canonical lapse function and apply it to prove uniqueness results. Finally, we suggest a notion of force on test particles in geometrostatic space-times.
22#
發(fā)表于 2025-3-25 07:30:16 | 只看該作者
23#
發(fā)表于 2025-3-25 13:16:53 | 只看該作者
Non-Linear Effects in Non-Kerr Spacetimesacetime detectable. One of the differences is that these non-Kerr spacetimes do not posses all the symmetries needed to make them integrable. We discuss how we can take advantage of this fact by examining EMRIs into the Manko–Novikov spacetime.
24#
發(fā)表于 2025-3-25 17:31:45 | 只看該作者
25#
發(fā)表于 2025-3-25 22:45:39 | 只看該作者
26#
發(fā)表于 2025-3-26 00:34:59 | 只看該作者
Hidden Symmetries of the Dirac Equation in Curved Space-Timeimit, the spinning particle. A concrete application of the general results is provided by the case of rotating higher dimensional black holes with cosmological constant, which we discuss. For these metrics the Dirac equation is separable and the relation between this and hidden symmetries is explained.
27#
發(fā)表于 2025-3-26 08:00:44 | 只看該作者
28#
發(fā)表于 2025-3-26 12:07:54 | 只看該作者
Shape Dynamicsl covariance, but not local relativity of rods. It is the purpose of this contribution to show how Shape Dynamics, a theory that is locally equivalent to General Relativity, implements local relativity of rods and spatial covariance and how a BRST formulation, which I call Doubly General Relativity, implements all of Barbour’s principles.
29#
發(fā)表于 2025-3-26 14:02:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:19:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 09:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内黄县| 台江县| 普陀区| 南漳县| 伽师县| 凤城市| 盐边县| 会昌县| 梧州市| 巴塘县| 丰城市| 手机| 离岛区| 察隅县| 海阳市| 平定县| 哈巴河县| 沙湾县| 徐州市| 江华| 九江市| 宁河县| 桂平市| 潼南县| 琼中| 富平县| 临泽县| 宁德市| 沙雅县| 栖霞市| 镇赉县| 临湘市| 永善县| 南皮县| 丹阳市| 什邡市| 固始县| 定日县| 海原县| 汪清县| 漳州市|