找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relativistic Quantum Mechanics; Wave Equations Walter Greiner Textbook 19901st edition Springer-Verlag Berlin Heidelberg 1990 Dirac equatio

[復(fù)制鏈接]
樓主: satisficer
51#
發(fā)表于 2025-3-30 09:36:39 | 只看該作者
Wave Equations for Particles with Arbitrary Spins,equation with positive energy vanish in the case .. ≠ 0 in the rest system of the particles [cf. (6.13)]. Thus, for ...... (which means ..- = 0 when we are in the rest system) the spinor components are given by ..(0) = δ. and thus ..
52#
發(fā)表于 2025-3-30 13:16:08 | 只看該作者
Lorentz Invariance and Relativistic Symmetry Principles,mation .., which relates each point with coordinates .. to new ones ... the absolute value should remain unchanged by this transformation (this is the fundamental, defining condition for orthogonal transformations), i.e. ..
53#
發(fā)表于 2025-3-30 18:21:39 | 只看該作者
,A Wave Equation for Spin-1/2 Particles — The Dirac Equation,ite probability density. At that time there were doubts concerning the Klein-Gordon equation, which did not yield such probability density [see (1.29)]. The charge density interpretation was not known at that time and would have made little physical sense, because π. and π. mesons as charged spin-0
54#
發(fā)表于 2025-3-30 21:46:01 | 只看該作者
Bilinear Covariants of the Dirac Spinors,the Dirac matrices and their products. We write and verify step by step the postulated properties of the . as well as some extra ones (also cf. Example 3.1). First we shall prove that in (5.1) there are indeed 16 matrices. This is easily done by adding the values written in brackets below the symbol
55#
發(fā)表于 2025-3-31 03:22:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 06:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
应城市| 崇礼县| 广西| 密云县| 丰台区| 安新县| 通山县| 铁岭县| 温宿县| 江华| 来安县| 乐陵市| 新平| 海淀区| 林州市| 浦城县| 江安县| 岳阳县| 益阳市| 同江市| 定结县| 方山县| 荣成市| 韩城市| 海安县| 牙克石市| 周至县| 五华县| 化隆| 咸阳市| 如皋市| 赣州市| 鱼台县| 张家界市| 马关县| 哈巴河县| 开化县| 宜昌市| 钟祥市| 西华县| 阳信县|