找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relativistic Particle Physics; Hartmut M. Pilkuhn Textbook 1979 Springer-Verlag Berlin Heidelberg 1979 Dirac equation.Elementarteilchen.Qu

[復(fù)制鏈接]
查看: 13914|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:23:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Relativistic Particle Physics
編輯Hartmut M. Pilkuhn
視頻videohttp://file.papertrans.cn/827/826228/826228.mp4
叢書名稱Theoretical and Mathematical Physics
圖書封面Titlebook: Relativistic Particle Physics;  Hartmut M. Pilkuhn Textbook 1979 Springer-Verlag Berlin Heidelberg 1979 Dirac equation.Elementarteilchen.Qu
描述Why study relativistic particle physics? Because of deeper understanding, curiosity and applications. Consider first deeper understanding. Physics forms the basis of many other sciences, and relativistic particle physics forms the basis of physics. Starting from nonrelativistic point mechanics, there are three major steps: first to classical (unquantized) relativistic electrodynamics, then to non- relativistic quantum mechanics and finally to relativistic quantum physics. This book describes the third step. Relativistic particle problems which are mainly classical (such as synchrotron radiation) are largely omitted (see for example Jackson 1975). I have divided the subject into several smaller steps. The step from the Schr?dinger equation to the Klein-Gordon and Dirac equations (chapter 1) is easy, apart from logical inconsistencies in limiting cases. Chapter 2 deals mainly with two-particle problems. From two-particle unitarity (sect. 2-5) and a symmetric treatment of projectile and target in the Born approxima- tion to scattering (sect. 2-7), one is able to deduce recoil corrections to the relativistic one-particle equations (mainly the reduced mass, sect. 2-9). The final formula
出版日期Textbook 1979
關(guān)鍵詞Dirac equation; Elementarteilchen; Quantenelektrodynamik; Relativistische Quantenmechanik; mechanics; qua
版次1
doihttps://doi.org/10.1007/978-3-642-88079-7
isbn_softcover978-3-642-88081-0
isbn_ebook978-3-642-88079-7Series ISSN 1864-5879 Series E-ISSN 1864-5887
issn_series 1864-5879
copyrightSpringer-Verlag Berlin Heidelberg 1979
The information of publication is updating

書目名稱Relativistic Particle Physics影響因子(影響力)




書目名稱Relativistic Particle Physics影響因子(影響力)學(xué)科排名




書目名稱Relativistic Particle Physics網(wǎng)絡(luò)公開度




書目名稱Relativistic Particle Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Relativistic Particle Physics被引頻次




書目名稱Relativistic Particle Physics被引頻次學(xué)科排名




書目名稱Relativistic Particle Physics年度引用




書目名稱Relativistic Particle Physics年度引用學(xué)科排名




書目名稱Relativistic Particle Physics讀者反饋




書目名稱Relativistic Particle Physics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:36:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:42:08 | 只看該作者
Hartmut M. Pilkuhnson and Sara Moradi in the fourth contribution. They considerthe motion of charged particles in a 3-dimensional magnetic field in the presence of linear friction and of a stochastic electric field.? Analysis of low-frequency instabilities in a low-temperature magnetized plasma is presented by Dan-Gh
地板
發(fā)表于 2025-3-22 06:28:01 | 只看該作者
137:554, 1903). The properties of the M-L function and its generalizations had been totally ignored by the scientific community for a long time due to their unknown application in the science. In 1930 Hille and Tamarkin solved the Abel-Volterra integral equation in terms of the M-L function (Hille
5#
發(fā)表于 2025-3-22 12:40:04 | 只看該作者
1864-5879 ttering (sect. 2-7), one is able to deduce recoil corrections to the relativistic one-particle equations (mainly the reduced mass, sect. 2-9). The final formula978-3-642-88081-0978-3-642-88079-7Series ISSN 1864-5879 Series E-ISSN 1864-5887
6#
發(fā)表于 2025-3-22 14:43:54 | 只看該作者
Textbook 1979icle problems. From two-particle unitarity (sect. 2-5) and a symmetric treatment of projectile and target in the Born approxima- tion to scattering (sect. 2-7), one is able to deduce recoil corrections to the relativistic one-particle equations (mainly the reduced mass, sect. 2-9). The final formula
7#
發(fā)表于 2025-3-22 20:33:29 | 只看該作者
One-Particle Problems,Lorentz discovered that Maxwell’s equations maintain their form under certain linear transformations of the time . and coordinates x. The transformations were further studied by Poincaré and generalized to massive particles of arbitrary interactions by Einstein. The homogeneous Maxwell equations are ..
8#
發(fā)表于 2025-3-22 23:36:51 | 只看該作者
Two-Particle Problems,The theory of relativistic particles describes elastic and inelastic collisions, particle production, and particle decays. The corresponding transition probability amplitudes .. form an .-matrix similar to the one mentioned in section 1–3, but the meaning of the indices . and . is more complicated.
9#
發(fā)表于 2025-3-23 01:36:14 | 只看該作者
Particular Hadronic Processes,Due to the low threshold of the . system .. = 4.. knowledge of lowenergy scattering is essential in the analysis of other processes such as . scattering or . scattering. Unfortunately, the instability of pions has excluded direct collision experiments so far. The many indirect methods are described in a book by Martin et al. (1976).
10#
發(fā)表于 2025-3-23 05:53:20 | 只看該作者
Theoretical and Mathematical Physicshttp://image.papertrans.cn/r/image/826228.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 08:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中牟县| 扶绥县| 盐城市| 东港市| 和田县| 霞浦县| 台南市| 萨迦县| 大港区| 文水县| 佛教| 独山县| 诸暨市| 拉孜县| 淮阳县| 淮滨县| 河东区| 宁海县| 永福县| 大冶市| 屏东市| 忻城县| 金山区| 桦南县| 九寨沟县| 霸州市| 麟游县| 宝鸡市| 樟树市| 古蔺县| 平和县| 杭锦旗| 韶山市| 深州市| 东明县| 丹巴县| 拉孜县| 涞源县| 富阳市| 崇阳县| 大关县|