找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning; Richard S. Sutton Book 1992 Springer Science+Business Media New York 1992 agents.algorithms.artificial intelligenc

[復(fù)制鏈接]
樓主: 審美家
11#
發(fā)表于 2025-3-23 11:16:56 | 只看該作者
12#
發(fā)表于 2025-3-23 16:16:06 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:45 | 只看該作者
Technical Note,od for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states..This paper presents and proves in detail a convergence theorem for Q-learning based on that outlined in Watkins (1989)
14#
發(fā)表于 2025-3-24 00:56:57 | 只看該作者
15#
發(fā)表于 2025-3-24 06:20:29 | 只看該作者
Transfer of Learning by Composing Solutions of Elemental Sequential Tasks,s of reinforcement learning have focused on single tasks. In this paper I consider a class of sequential decision tasks (SDTs), called composite sequential decision tasks, formed by temporally concatenating a number of elemental sequential decision tasks. Elemental SIYI’s cannot be decomposed into s
16#
發(fā)表于 2025-3-24 07:38:28 | 只看該作者
17#
發(fā)表于 2025-3-24 10:40:33 | 只看該作者
18#
發(fā)表于 2025-3-24 14:51:25 | 只看該作者
,The Convergence of TD(λ) for General λ,it still converges, but to a different answer from the least mean squares algorithm. Finally it adapts Watkins’ theorem that Q-learning, his closely related prediction and action learning method, converges with probability one, to demonstrate this strong form of convergence for a slightly modified version of TD.
19#
發(fā)表于 2025-3-24 22:30:27 | 只看該作者
A Reinforcement Connectionist Approach to Robot Path Finding in Non-Maze-Like Environments,uts and outputs, (iii) exhibits good noise-tolerance and generalization capabilities, (iv) copes with dynamic environments, and (v) solves an instance of the path finding problem with strong performance demands.
20#
發(fā)表于 2025-3-25 02:27:05 | 只看該作者
0893-3405 ychology for almost a century, and that workhas had a very strong impact on the AI/engineering work. One could infact consider all of reinforcement learning to 978-1-4613-6608-9978-1-4615-3618-5Series ISSN 0893-3405
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 20:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岐山县| 正定县| 唐山市| 新昌县| 伊宁市| 洛宁县| 沅江市| 盘山县| 谢通门县| 古蔺县| 农安县| 裕民县| 萝北县| 盐池县| 内黄县| 琼中| 民权县| 红原县| 肥乡县| 封丘县| 庄浪县| 全南县| 永德县| 阳原县| 义马市| 比如县| 云林县| 余江县| 蒙自县| 健康| 通化市| 延川县| 元江| 阜平县| 福海县| 海城市| 乳山市| 石门县| 天台县| 虞城县| 绥棱县|