找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularization of Ill-Posed Problems by Iteration Methods; S. F. Gilyazov,N. L. Gol’dman Book 2000 Springer Science+Business Media B.V. 20

[復(fù)制鏈接]
樓主: 嚴(yán)峻
11#
發(fā)表于 2025-3-23 10:52:08 | 只看該作者
12#
發(fā)表于 2025-3-23 17:36:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:37:58 | 只看該作者
14#
發(fā)表于 2025-3-23 22:59:51 | 只看該作者
Regularizing Algorithms for Linear Ill-Posed Problems: Unified Approach,Let .: . be a linear bounded operator between Hubert spaces . and .. For any element . ? . we shall consider the set . In a general case the set .. can be empty.
15#
發(fā)表于 2025-3-24 06:26:44 | 只看該作者
Iteration Steepest Descent Methods for Linear Operator Equations,Our investigation of regularizing properties of iterative methods for the stable solution of ill-posed problems starts with analysis of steepest descent methods.
16#
發(fā)表于 2025-3-24 10:29:21 | 只看該作者
Iteration Conjugate Direction Methods for Linear Operator Equations,Iterative methods of steepest descent considered in Chapter 2 provide the best rate of convergence in each iteration of the process. However such a ‘local optimal strategy’ is not so suitable for solving the problem (1.1.1), (1.1.6) of computation of a global minimum of a quadratic functional.
17#
發(fā)表于 2025-3-24 12:41:02 | 只看該作者
Iteration Steepest Descent Methods for Nonlinear Operator Equations,In this chapter we investigate regularizing iteration methods for approximate solution of the nonlinear operator equation . where .: . → . is a nonlinear operator, . and . are the Hilbert spaces, . ?. is the given element. We assume that the equation (4.1.1) has the unique solution ..? ..
18#
發(fā)表于 2025-3-24 18:11:22 | 只看該作者
Iteration Methods for Ill-Posed Constrained Minimization Problems,Let us consider the problem of an approximate solution of a nonlinear operator equation of the first kind . where . (.): . → . is defined on the nonempty set . (.) ? . and . are Hubert spaces.
19#
發(fā)表于 2025-3-24 22:01:09 | 只看該作者
Introduction,ot exist, and even if they exist they need not be unique and stable, i.e., continuously depending on the input data. To obtain stable numerical solutions of problems for which the Hadamard conditions of correctness [83, 84] are not satisfied, the regularization methods must be applied.
20#
發(fā)表于 2025-3-25 03:12:56 | 只看該作者
Descriptive Regularization Algorithms on the basis of the Conjugate Gradient Projection method,aditional way to regularize them, i.e., to convert them into related well-posed problems, is applied. This way is based on utilization of quantitative information about the level of errors in the input data and on greatly general . information pertaining to smoothness of the solution. This ensures a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新宾| 五指山市| 兴义市| 永兴县| 凤山县| 祁阳县| 大同市| 叶城县| 湖口县| 普陀区| 沙田区| 商水县| 甘泉县| 兴国县| 大渡口区| 乳山市| 井陉县| 江陵县| 同心县| 乐清市| 宾川县| 海伦市| 盘山县| 松阳县| 海城市| 崇义县| 漠河县| 乐陵市| 新化县| 会泽县| 永安市| 绥宁县| 东安县| 东阿县| 哈尔滨市| 方山县| 东辽县| 恩平市| 梁山县| 南昌市| 图们市|