找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity of the One-phase Free Boundaries; Bozhidar Velichkov Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023 Ope

[復制鏈接]
樓主: 小巷
11#
發(fā)表于 2025-3-23 11:46:12 | 只看該作者
Non-degeneracy of the Local Minimizers,In this section we prove the non-degeneracy of the solutions to the one-phase problem (.). Our main result is the following.
12#
發(fā)表于 2025-3-23 16:34:20 | 只看該作者
Measure and Dimension of the Free Boundary,This chapter is dedicated to the measure theoretic structure of the free boundary . Ω.. The results presented here are mainly a consequence of the Lipschitz continuity and the non-degeneracy of the minimizer . (Theorem . and Proposition .).
13#
發(fā)表于 2025-3-23 20:54:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:20:56 | 只看該作者
15#
發(fā)表于 2025-3-24 05:08:26 | 只看該作者
The Weiss Monotonicity Formula and Its Consequences,This chapter is dedicated to the monotonicity formula for the boundary adjusted energy introduced by Weiss in [.]. Precisely, for every Λ?≥?0 and every .?∈?..(..).
16#
發(fā)表于 2025-3-24 09:53:36 | 只看該作者
Dimension of the Singular Set,In this chapter, we prove Theorem .. As in the original work of Weiss (see [.]), we will use the so-called Federer’s dimension reduction principle, which first appeared in [.].
17#
發(fā)表于 2025-3-24 14:14:38 | 只看該作者
18#
發(fā)表于 2025-3-24 15:42:52 | 只看該作者
An Epiperimetric Inequality Approach to the Regularity of the One-Phase Free Boundaries,Throughout this section, we will use the notation . where .. is the unit ball in ., .?≥?2 and .?∈?..(..).
19#
發(fā)表于 2025-3-24 19:42:02 | 只看該作者
20#
發(fā)表于 2025-3-25 03:02:51 | 只看該作者
978-3-031-13237-7The Editor(s) (if applicable) and The Author(s) 2023
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-17 07:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
麻江县| 武夷山市| 广平县| 泰兴市| 伊金霍洛旗| 阜城县| 信丰县| 泽州县| 墨玉县| 和田市| 磐石市| 梓潼县| 平邑县| 临高县| 西盟| 梓潼县| 于田县| 乐亭县| 苍梧县| 泾源县| 崇礼县| 长垣县| 榆林市| 杭锦旗| 海原县| 富源县| 西青区| 科技| 文安县| 汪清县| 寿宁县| 鹰潭市| 恩施市| 蒙山县| 开化县| 松江区| 双城市| 聂拉木县| 星子县| 湘潭市| 奉贤区|